Bertrand Pain

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2974708/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Identification of BTG2, an antiproliferative p53–dependent component of the DNA damage cellular response pathway. Nature Genetics, 1996, 14, 482-486.	9.4	384
2	Role of miR-34c microRNA in the late steps of spermatogenesis. Rna, 2010, 16, 720-731.	1.6	239
3	The Oct4 homologue PouV and Nanog regulate pluripotency in chicken embryonic stem cells. Development (Cambridge), 2007, 134, 3549-3563.	1.2	175
4	A novel mechanism of action for v-ErbA: Abrogation of the inactivation of transcription factor AP-1 by retinoic acid and thyroid hormone receptors. Cell, 1991, 67, 731-740.	13.5	160
5	Reinforcement of STAT3 activity reprogrammes human embryonic stem cells to naive-like pluripotency. Nature Communications, 2015, 6, 7095.	5.8	137
6	Epigenetics and phenotypic variability: some interesting insights from birds. Genetics Selection Evolution, 2013, 45, 16.	1.2	73
7	Reprogramming capacity of Nanog is functionally conserved in vertebrates and resides in a unique homeodomain. Development (Cambridge), 2011, 138, 4853-4865.	1.2	69
8	Ectopic expression of Cvh (Chicken Vasa homologue) mediates the reprogramming of chicken embryonic stem cells to a germ cell fate. Developmental Biology, 2009, 330, 73-82.	0.9	62
9	Transcriptome analysis of chicken ES, blastodermal and germ cells reveals that chick ES cells are equivalent to mouse ES cells rather than EpiSC. Stem Cell Research, 2015, 14, 54-67.	0.3	61
10	Identification of a new gene family specifically expressed in chicken embryonic stem cells and early embryo. Mechanisms of Development, 2001, 103, 79-91.	1.7	41
11	Chicken embryonic stem cells as a nonâ€mammalian embryonic stem cell model. Development Growth and Differentiation, 2010, 52, 101-114.	0.6	36
12	Chicken embryonic stem cells and primordial germ cells display different heterochromatic histone marks than their mammalian counterparts. Epigenetics and Chromatin, 2016, 9, 5.	1.8	27
13	Chicken Embryonic Stem Cells: Establishment and Characterization. Methods in Molecular Biology, 2013, 1074, 137-150.	0.4	24
14	In vitro culture and characterization of duck primordial germ cells. Poultry Science, 2019, 98, 1820-1832.	1.5	23
15	InÂvitro generation and characterization of chicken long-term germ cells from different embryonic origins. Theriogenology, 2015, 84, 732-742.e2.	0.9	21
16	Recurrent DCC gene losses during bird evolution. Scientific Reports, 2017, 7, 37569.	1.6	19
17	Derivation of keratinocytes from chicken embryonic stem cells: Establishment and characterization of differentiated proliferative cell populations. Stem Cell Research, 2015, 14, 224-237.	0.3	18
18	NANOG Is Required for the Long-Term Establishment of Avian Somatic Reprogrammed Cells. Stem Cell Reports, 2018, 11, 1272-1286.	2.3	18

Bertrand Pain

#	Article	IF	CITATIONS
19	Pluripotent genes in avian stem cells. Development Growth and Differentiation, 2013, 55, 41-51.	0.6	16
20	Chicken Induced Pluripotent Stem Cells: Establishment and Characterization. Methods in Molecular Biology, 2017, 1650, 211-228.	0.4	14
21	Transcription factor cCP2 controls gene expression in chicken embryonic stem cells. Nucleic Acids Research, 2004, 32, 2259-2271.	6.5	13
22	Three-dimensional culture of chicken primordial germ cells (cPGCs) in defined media containing the functional polymer FP003. PLoS ONE, 2018, 13, e0200515.	1.1	13
23	Chicken Embryonic-Stem Cells Are Permissive to Poxvirus Recombinant Vaccine Vectors. Genes, 2019, 10, 237.	1.0	13
24	Effects of mono-(2-ethylhexyl) phthalate (MEHP) on chicken germ cells cultured in vitro. Environmental Science and Pollution Research, 2013, 20, 2771-2783.	2.7	11
25	Network Features and Dynamical Landscape of Naive and Primed Pluripotency. Biophysical Journal, 2018, 114, 237-248.	0.2	11
26	Molecular signatures of epithelial oviduct cells of a laying hen (Gallus gallus domesticus) and quail (Coturnix japonica). BMC Developmental Biology, 2018, 18, 9.	2.1	11
27	ESCDL-1, a new cell line derived from chicken embryonic stem cells, supports efficient replication of Mardiviruses. PLoS ONE, 2017, 12, e0175259.	1.1	11
28	Astacinâ€like metalloâ€endopeptidase is dynamically expressed in embryonic stem cells and embryonic epithelium during morphogenesis. Developmental Dynamics, 2012, 241, 574-582.	0.8	10
29	Species-Specific Molecular Barriers to SARS-CoV-2 Replication in Bat Cells. Journal of Virology, 2022, 96, .	1.5	10
30	Stage-dependent piRNAs in chicken implicated roles in modulating male germ cell development. BMC Genomics, 2018, 19, 425.	1.2	9
31	Successful chimera production in the Hungarian goose (Anser anser domestica) by intracardiac injection of blastodermal cells in 3-day-old embryos. Reproduction, Fertility and Development, 2017, 29, 2206.	0.1	8
32	Reprogrammed Pteropus Bat Stem Cells as A Model to Study Host-Pathogen Interaction during Henipavirus Infection. Microorganisms, 2021, 9, 2567.	1.6	7
33	Differential transcriptional regulation of the NANOG gene in chicken primordial germ cells and embryonic stem cells. Journal of Animal Science and Biotechnology, 2021, 12, 40.	2.1	6
34	Liver organoids in domestic animals: an expected promise for metabolic studies. Veterinary Research, 2021, 52, 47.	1.1	6
35	Organoids in domestic animals: with which stem cells?. Veterinary Research, 2021, 52, 38.	1.1	5
36	Pluripotency in avian species. International Journal of Developmental Biology, 2018, 62, 245-255.	0.3	4

Bertrand Pain

#	Article	IF	CITATIONS
37	Expression of a bioactive recombinant human interleukin-11 in chicken HD11 cell line. Cytokine, 2005, 30, 382-390.	1.4	3
38	Cerebral organoids and their potential for studies of brain diseases in domestic animals. Veterinary Research, 2021, 52, 65.	1.1	3
39	Identification of side population cells in chicken embryonic gonads. Theriogenology, 2015, 83, 377-384.	0.9	2
40	Chicken Stem Cells as a Model to Generate Transgenic Chicken: Present and Perspectives. Journal of Poultry Science, 2006, 43, 313-322.	0.7	2
41	Reprogramming capacity of Nanog is functionally conserved in vertebrates and resides in a unique homeodomain. Journal of Cell Science, 2011, 124, e1-e1.	1.2	0