
Ranjit Kumar Upadhyay

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2974679/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Dynamics of a three species food chain model with Crowley–Martin type functional response. Chaos, Solitons and Fractals, 2009, 42, 1337-1346.	2.5	79
2	Chaos: An Ecological Reality?. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 1998, 08, 1325-1333.	0.7	78
3	Why chaos is rarely observed in natural populations. Chaos, Solitons and Fractals, 1997, 8, 1933-1939.	2.5	77
4	Bifurcation analysis and diverse firing activities of a modified excitable neuron model. Cognitive Neurodynamics, 2019, 13, 393-407.	2.3	68
5	Effect of seasonality on the dynamics of 2 and 3 species prey–predator systems. Nonlinear Analysis: Real World Applications, 2005, 6, 509-530.	0.9	65
6	Dynamics of an SEIR epidemic model with nonlinear incidence and treatment rates. Nonlinear Dynamics, 2019, 96, 2351-2368.	2.7	61
7	Top-predator interference and gestation delay as determinants of the dynamics of a realistic model food chain. Chaos, Solitons and Fractals, 2014, 69, 50-63.	2.5	55
8	Modeling the virus dynamics in computer network with SVEIR model and nonlinear incident rate. Journal of Applied Mathematics and Computing, 2017, 54, 485-509.	1.2	55
9	Multiple attractors and crisis route to chaos in a model food-chain. Chaos, Solitons and Fractals, 2003, 16, 737-747.	2.5	53
10	Spiking and bursting patterns of fractional-order Izhikevich model. Communications in Nonlinear Science and Numerical Simulation, 2018, 56, 161-176.	1.7	51
11	Mathematical model of COVID-19 with comorbidity and controlling using non-pharmaceutical interventions and vaccination. Nonlinear Dynamics, 2021, 106, 1213-1227.	2.7	49
12	Firing activities of a fractional-order FitzHugh-Rinzel bursting neuron model and its coupled dynamics. Scientific Reports, 2019, 9, 15721.	1.6	46
13	Crisis-limited chaotic dynamics in ecological systems. Chaos, Solitons and Fractals, 2001, 12, 205-218.	2.5	45
14	Population dynamic consequences of fearful prey in a spatiotemporal predator-prey system. Mathematical Biosciences and Engineering, 2019, 16, 338-372.	1.0	45
15	Chaotic population dynamics and biology of the top-predator. Chaos, Solitons and Fractals, 2004, 21, 1195-1204.	2.5	44
16	Fractional-order leaky integrate-and-fire model with long-term memory and power law dynamics. Neural Networks, 2017, 93, 110-125.	3.3	38
17	Dynamics of generalist predator in a stochastic environment: Effect of delayed growth and prey refuge. Applied Mathematics and Computation, 2015, 268, 1072-1094.	1.4	36
18	Spread of a disease and its effect on population dynamics in an eco-epidemiological system. Communications in Nonlinear Science and Numerical Simulation, 2014, 19, 4170-4184.	1.7	34

#	Article	IF	CITATIONS
19	Introduction to Mathematical Modeling and Chaotic Dynamics. , 0, , .		33
20	Effects of industrialization and pollution on resource biomass: a mathematical model. Ecological Modelling, 2003, 167, 83-95.	1.2	32
21	Mixed Mode Oscillations and Synchronous Activity in Noise Induced Modified Morris–Lecar Neural System. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2017, 27, 1730019.	0.7	32
22	Stability and complexity in ecological systems. Chaos, Solitons and Fractals, 2000, 11, 533-542.	2.5	31
23	Chaos in eco-epidemiological problem of the Salton Sea and its possible control. Applied Mathematics and Computation, 2008, 196, 392-401.	1.4	31
24	Optimal treatment strategies for delayed cancer-immune system with multiple therapeutic approach. Chaos, Solitons and Fractals, 2020, 136, 109806.	2.5	31
25	Spatiotemporal pattern formation in a diffusive predator-prey system: an analytical approach. Journal of Applied Mathematics and Computing, 2009, 31, 413-432.	1.2	30
26	Wave of chaos in a diffusive system: Generating realistic patterns of patchiness in plankton–fish dynamics. Chaos, Solitons and Fractals, 2009, 40, 262-276.	2.5	30
27	Spatiotemporal Dynamics in a Spatial Plankton System. Mathematical Modelling of Natural Phenomena, 2010, 5, 102-122.	0.9	30
28	Complex dynamics and synchronization in two non-identical chaotic ecological systems. Chaos, Solitons and Fractals, 2009, 40, 2233-2241.	2.5	29
29	Exploring dynamical complexity in a time-delayed tumor-immune model. Chaos, 2020, 30, 123118.	1.0	29
30	Chaos control and synchronization of a three-species food chain model via Holling functional response. International Journal of Computer Mathematics, 2010, 87, 199-214.	1.0	28
31	Complex dynamics of ecological systems under nonlinear harvesting: Hopf bifurcation and Turing instability. Nonlinear Dynamics, 2015, 79, 2251-2270.	2.7	27
32	Bifurcation analysis of an e-epidemic model in wireless sensor network. International Journal of Computer Mathematics, 2018, 95, 1775-1805.	1.0	27
33	Spatiotemporal dynamics in a delayed diffusive predator model. Applied Mathematics and Computation, 2013, 224, 524-534.	1.4	25
34	The role of top predator interference on the dynamics of a food chain model. Communications in Nonlinear Science and Numerical Simulation, 2013, 18, 757-768.	1.7	25
35	Predator interference effects on biological control: The "paradox―of the generalist predator revisited. Communications in Nonlinear Science and Numerical Simulation, 2016, 39, 169-184.	1.7	23
36	Dynamics and responses of a predator–prey system with competitive interference and time delay. Nonlinear Dynamics, 2016, 83, 821-837.	2.7	23

3

#	Article	IF	CITATIONS
37	Wave of Chaos and Pattern Formation in Spatial Predator-Prey Systems with Holling Type IV Predator Response. Mathematical Modelling of Natural Phenomena, 2008, 3, 71-95.	0.9	22
38	Finite Time Blowup in a Realistic Food-Chain Model. , 2013, 2013, 1-12.		21
39	Ecological chaos and the choice of optimal harvesting policy. Journal of Mathematical Analysis and Applications, 2017, 448, 1533-1559.	0.5	21
40	Modeling the plankton–fish dynamics with top predator interference and multiple gestation delays. Nonlinear Dynamics, 2020, 100, 4003-4029.	2.7	21
41	Transmission dynamics of epidemic spread and outbreak of Ebola in West Africa: fuzzy modeling and simulation. Journal of Applied Mathematics and Computing, 2019, 60, 637-671.	1.2	20
42	Exploring the behavior of malware propagation on mobile wireless sensor networks: Stability and control analysis. Mathematics and Computers in Simulation, 2021, 190, 246-269.	2.4	20
43	How do ecosystems respond to external perturbations?. Chaos, Solitons and Fractals, 2000, 11, 1963-1982.	2.5	19
44	Evolving to the edge of chaos: Chance or necessity?aˆ†. Chaos, Solitons and Fractals, 2006, 30, 1074-1087.	2.5	19
45	Exploring the dynamics of a Holling–Tanner model with cannibalism in both predator and prey population. International Journal of Biomathematics, 2018, 11, 1850010.	1.5	19
46	Modeling the fear effect and stability of non-equilibrium patterns in mutually interfering predator–prey systems. Applied Mathematics and Computation, 2020, 371, 124948.	1.4	19
47	Trophic structure and dynamical complexity in simple ecological models. Ecological Complexity, 2007, 4, 212-222.	1.4	18
48	Propagation of Turing patterns in a plankton model. Journal of Biological Dynamics, 2012, 6, 524-538.	0.8	18
49	On the explosive instability in a threeâ€species food chain model with modified Holling type IV functional response. Mathematical Methods in the Applied Sciences, 2017, 40, 5707-5726.	1.2	18
50	Strategies for the existence of spatial patterns in predator–prey communities generated by cross-diffusion. Nonlinear Analysis: Real World Applications, 2020, 51, 103018.	0.9	18
51	An investigation of delay induced stability transition in nutrient-plankton systems. Chaos, Solitons and Fractals, 2021, 142, 110474.	2.5	18
52	Dynamical consequences of predator interference in a tri-trophic model food chain. Nonlinear Analysis: Real World Applications, 2010, 11, 809-818.	0.9	17
53	Complex dynamics of sexually reproductive generalist predator and gestation delay in a food chain model: double Hopf-bifurcation to Chaos. Journal of Applied Mathematics and Computing, 2017, 55, 513-547.	1.2	17
54	Dynamical complexities in a tri-trophic hybrid food chain model with Holling type II and Crowley–Martin functional responses. Nonlinear Analysis: Modelling and Control, 2010, 15, 361-375.	1.1	17

#	Article	IF	CITATIONS
55	NONLINEAR NON-EQUILIBRIUM PATTERN FORMATION IN A SPATIAL AQUATIC SYSTEM: EFFECT OF FISH PREDATION. Journal of Biological Systems, 2010, 18, 129-159.	0.5	16
56	Diverse neuronal responses of a fractional-order Izhikevich model: journey from chattering to fast spiking. Nonlinear Dynamics, 2018, 91, 1275-1288.	2.7	16
57	OBSERVABILITY OF CHAOS AND CYCLES IN ECOLOGICAL SYSTEMS: LESSONS FROM PREDATOR–PREY MODELS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2009, 19, 3169-3234.	0.7	15
58	DIFFUSION-DRIVEN INSTABILITIES AND SPATIO-TEMPORAL PATTERNS IN AN AQUATIC PREDATOR–PREY SYSTEM WITH BEDDINGTON–DEANGELIS TYPE FUNCTIONAL RESPONSE. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2011, 21, 663-684.	0.7	15
59	Age-group-targeted testing for COVID-19 as a new prevention strategy. Nonlinear Dynamics, 2020, 101, 1921-1932.	2.7	15
60	Species extinction problem: genetic vs ecological factors. Applied Mathematical Modelling, 2001, 25, 937-951.	2.2	14
61	INFLUENCE OF ENVIRONMENTAL NOISE ON THE DYNAMICS OF A REALISTIC ECOLOGICAL MODEL. Fluctuation and Noise Letters, 2007, 07, L61-L77.	1.0	14
62	Modeling the spread of bird flu and predicting outbreak diversity. Nonlinear Analysis: Real World Applications, 2008, 9, 1638-1648.	0.9	14
63	Dynamics of an ecological model living on the edge of chaos. Applied Mathematics and Computation, 2009, 210, 455-464.	1.4	14
64	Detecting malicious chaotic signals in wireless sensor network. Physica A: Statistical Mechanics and Its Applications, 2018, 492, 1129-1152.	1.2	14
65	Discrete and data packet delays as determinants of switching stability in wireless sensor networks. Applied Mathematical Modelling, 2019, 72, 513-536.	2.2	14
66	Bifurcation and bio-economic analysis of a prey-generalist predator model with Holling type IV functional response and nonlinear age-selective prey harvesting. Chaos, Solitons and Fractals, 2019, 122, 229-235.	2.5	14
67	Deciphering Dynamics of Recent Epidemic Spread and Outbreak in West Africa: The Case of Ebola Virus. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2016, 26, 1630024.	0.7	13
68	Global dynamics of stochastic predator–prey model with mutual interference and prey defense. Journal of Applied Mathematics and Computing, 2019, 60, 169-190.	1.2	13
69	Diffusion dynamics of a conductance-based neuronal population. Physical Review E, 2019, 99, 042307.	0.8	13
70	Modeling and control of computer virus attack on a targeted network. Physica A: Statistical Mechanics and Its Applications, 2020, 538, 122617.	1.2	13
71	Short-term recurrent chaos and role of Toxin Producing Phytoplankton (TPP) on chaotic dynamics in aquatic systems. Chaos, Solitons and Fractals, 2009, 39, 1550-1564.	2.5	12
72	Exploring dynamical complexity in diffusion driven predator–prey systems: Effect of toxin producing phytoplankton and spatial heterogeneities. Chaos, Solitons and Fractals, 2009, 42, 584-594.	2.5	12

#	Article	IF	CITATIONS
73	DETERMINISTIC CHAOS VERSUS STOCHASTIC OSCILLATION IN A PREY-PREDATOR-TOP PREDATOR MODEL. Mathematical Modelling and Analysis, 2011, 16, 343-364.	0.7	12
74	Ecological dynamics of age selective harvesting of fish population: Maximum sustainable yield and its control strategy. Chaos, Solitons and Fractals, 2016, 93, 111-122.	2.5	12
75	Viral dynamic model with cellular immune response: A case study of HIV-1 infected humanized mice. Physica A: Statistical Mechanics and Its Applications, 2019, 524, 1-14.	1.2	12
76	Investigation of the long time dynamics of a diffusive three species aquatic model. Dynamics of Partial Differential Equations, 2010, 7, 217-244.	1.0	12
77	Modelling and analysis of delayed tumour–immune system with hunting T-cells. Mathematics and Computers in Simulation, 2023, 203, 669-684.	2.4	12
78	Complex Population Dynamics in Heterogeneous Environments: Effects of Random and Directed Animal Movements. International Journal of Nonlinear Sciences and Numerical Simulation, 2012, 13, 299-309.	0.4	11
79	DIFFUSIVE THREE SPECIES PLANKTON MODEL IN THE PRESENCE OF TOXIC PREY: APPLICATION TO SUNDARBAN MANGROVE WETLAND. Journal of Biological Systems, 2017, 25, 185-206.	0.5	11
80	Dynamics comparison between non-spatial and spatial systems of the plankton–fish interaction model. Nonlinear Dynamics, 2020, 99, 2479-2503.	2.7	11
81	Emergence of hidden dynamics in different neuronal network architecture with injected electromagnetic induction. Applied Mathematical Modelling, 2022, 111, 288-309.	2.2	11
82	Modeling spatiotemporal dynamics of vole populations in Europe and America. Mathematical Biosciences, 2010, 223, 47-57.	0.9	10
83	Restoration and recovery of damaged eco-epidemiological systems: Application to the Salton Sea, California, USA. Mathematical Biosciences, 2013, 242, 172-187.	0.9	10
84	Deciphering Dynamics of Epidemic Spread: The Case of Influenza Virus. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2014, 24, 1450064.	0.7	10
85	Wave of chaos in a spatial eco-epidemiological system: Generating realistic patterns of patchiness in rabbit–lynx dynamics. Mathematical Biosciences, 2016, 281, 98-119.	0.9	10
86	Long time dynamics of a three-species food chain model with Allee effect in the top predator. Computers and Mathematics With Applications, 2016, 71, 503-528.	1.4	10
87	Harmful algal blooms in fresh and marine water systems: The role of toxin producing phytoplankton. International Journal of Biomathematics, 2016, 09, 1650043.	1.5	10
88	Fractional-order excitable neural system with bidirectional coupling. Nonlinear Dynamics, 2017, 87, 2219-2233.	2.7	10
89	Synchronization and Pattern Formation in a Memristive Diffusive Neuron Model. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2021, 31, 2130030.	0.7	10
90	Spatiotemporal characteristics in systems of diffusively coupled excitable slow–fast FitzHugh–Rinzel dynamical neurons. Chaos, 2021, 31, 103122.	1.0	10

#	Article	IF	CITATIONS
91	Complex Dynamics of Wetland Ecosystem with Nonlinear Harvesting: Application to Chilika Lake in Odisha, India. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2015, 25, 1540016.	0.7	9
92	Disease Spread and Its Effect on Population Dynamics in Heterogeneous Environment. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2016, 26, 1650004.	0.7	9
93	Bifurcation analysis of a modified Leslie–Gower model with Holling type-IV functional response and nonlinear prey harvesting. Advances in Difference Equations, 2018, 2018, .	3.5	9
94	Delay-induced Hopf bifurcation of an SVEIR computer virus model with nonlinear incidence rate. Advances in Difference Equations, 2018, 2018, .	3.5	9
95	An epidemic model with multiple delays for the propagation of worms in wireless sensor networks. Results in Physics, 2020, 19, 103424.	2.0	9
96	Exploring the dynamics of a tritrophic food chain model with multiple gestation periods. Mathematical Biosciences and Engineering, 2019, 16, 4660-4691.	1.0	9
97	Pattern Formation in a Cross-Diffusive Holling-Tanner Model. Discrete Dynamics in Nature and Society, 2012, 2012, 1-12.	0.5	8
98	Modeling the effect of mutual interference in a delay-induced predator-prey system. Journal of Applied Mathematics and Computing, 2015, 49, 13-39.	1.2	8
99	Assessment of rabbit hemorrhagic disease in controlling the population of red fox: A measure to preserve endangered species in Australia. Ecological Complexity, 2016, 26, 6-20.	1.4	8
100	Virus dynamics of a distributed attack on a targeted network: Effect of firewall and optimal control. Communications in Nonlinear Science and Numerical Simulation, 2019, 73, 74-91.	1.7	8
101	Emergence of bursting in a network of memory dependent excitable and spiking leech-heart neurons. Journal of the Royal Society Interface, 2020, 17, 20190859.	1.5	8
102	Chaotic behaviour of population dynamic systems in ecology. Mathematical and Computer Modelling, 2000, 32, 1005-1015.	2.0	7
103	A PREDATOR–PREY INTERACTION MODEL WITH SELF- AND CROSS-DIFFUSION IN AQUATIC SYSTEMS. Journal of Biological Systems, 2014, 22, 691-712.	0.5	7
104	Conserving Iberian Lynx in Europe: Issues and challenges. Ecological Complexity, 2015, 22, 16-31.	1.4	7
105	Synchronization of bursting neurons with a slowly varying d. c. current. Chaos, Solitons and Fractals, 2017, 99, 195-208.	2.5	7
106	DYNAMIC RELATIONSHIP BETWEEN THE MUTUAL INTERFERENCE AND GESTATION DELAYS OF A HYBRID TRITROPHIC FOOD CHAIN MODEL. ANZIAM Journal, 2018, 59, 370-401.	0.3	7
107	Emergence of Spatial Patterns in a Damaged Diffusive Eco-Epidemiological System. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2018, 28, 1830028.	0.7	7
108	Spatial distribution of microalgae in marine systems: A reaction–diffusion model. Ecological Complexity, 2019, 39, 100771.	1.4	7

Ranjit Kumar Upadhyay

#	Article	IF	CITATIONS
109	Exploring the cascading effect of fear on the foraging activities of prey in a three species Agroecosystem. European Physical Journal Plus, 2021, 136, 1.	1.2	7
110	Predator–prey interaction system with mutually interfering predator: role of feedback control. Applied Mathematical Modelling, 2020, 87, 222-244.	2.2	7
111	Complex dynamics of diffusive predator–prey system with Beddington–DeAngelis functional response: The role of prey-taxis. Asian-European Journal of Mathematics, 2017, 10, 1750047.	0.2	6
112	Investigation of an explosive food chain model with interference and inhibitory effects. IMA Journal of Applied Mathematics, 2017, 82, 1209-1237.	0.8	6
113	Dynamics of a modified excitable neuron model: Diffusive instabilities and traveling wave solutions. Chaos, 2018, 28, 113104.	1.0	6
114	A delayed e-epidemic SLBS model for computer virus. Advances in Difference Equations, 2019, 2019, .	3.5	6
115	Stability and Hopf bifurcation analysis of a delayed tobacco smoking model containing snuffing class. Advances in Difference Equations, 2020, 2020, .	3.5	6
116	Complex dynamics of a three species food-chain model with Holling type IV functional response. Nonlinear Analysis: Modelling and Control, 2011, 16, 553-374.	1.1	6
117	Wave phenomena and edge of chaos in a diffusive predator-prey system under Allee effect. Differential Equations and Dynamical Systems, 2009, 17, 301-317.	0.5	5
118	Modeling wetland systems of Keoladeo National Park (KNP), India: the role of space. Wetlands Ecology and Management, 2014, 22, 605-624.	0.7	5
119	A method for estimation of parameters in a neural model with noisy measurements. Nonlinear Dynamics, 2016, 85, 2521-2533.	2.7	5
120	Finite Time Blow-up in a Delayed Diffusive Population Model with Competitive Interference. International Journal of Nonlinear Sciences and Numerical Simulation, 2017, 18, 435-450.	0.4	5
121	The Gestation Delay: A Factor Causing Complex Dynamics in Gause-Type Competition Models. Complexity, 2018, 2018, 1-21.	0.9	5
122	Salton Sea: An ecosystem in crisis. International Journal of Biomathematics, 2018, 11, 1850114.	1.5	5
123	Dynamical analysis for a deterministic SVIRS epidemic model with Holling type II incidence rate and multiple delays. Results in Physics, 2021, 24, 104181.	2.0	5
124	Analysis of spatially extended excitable Izhikevich neuron model near instability. Nonlinear Dynamics, 2021, 105, 3515-3527.	2.7	5
125	Effect of seasonality on a nutrient–plankton system with toxicity in the presence of refuge and additional food. European Physical Journal Plus, 2022, 137, 1.	1.2	5
126	Spatial pattern formation and delay induced destabilization in predator–prey model with fear effect. Mathematical Methods in the Applied Sciences, 2022, 45, 6801-6823.	1.2	5

Ranjit Kumar Upadhyay

#	Article	IF	CITATIONS
127	Conservation of degraded wetland system of Keoladeo National Park, Bharatpur, India. Ecological Complexity, 2017, 32, 74-89.	1.4	4
128	Estimation of biophysical parameters in a neuron model under random fluctuations. Applied Mathematics and Computation, 2018, 329, 364-373.	1.4	4
129	Stability and Hopf bifurcation of a delayed giving up smoking model with harmonic mean type incidence rate and relapse. Results in Physics, 2020, 19, 103619.	2.0	4
130	Dynamics and patterns of species abundance in ocean: A mathematical modeling study. Nonlinear Analysis: Real World Applications, 2021, 60, 103303.	0.9	4
131	Exploring the Dynamics of a Malware Propagation Model and Its Control Strategy. Wireless Personal Communications, 2021, 121, 1945-1978.	1.8	4
132	Chaotic Dynamics in a Three Species Aquatic Population Model with Holling Type II Functional Response. Nonlinear Analysis: Modelling and Control, 2008, 13, 103-115.	1.1	4
133	Emergence of Turing patterns and dynamic visualization in excitable neuron model. Applied Mathematics and Computation, 2022, 423, 127010.	1.4	4
134	Challenges of living in the harsh environments: A mathematical modeling study. Applied Mathematics and Computation, 2011, 217, 10105-10117.	1.4	3
135	Synchronization analysis through coupling mechanism in realistic neural models. Applied Mathematical Modelling, 2017, 44, 557-575.	2.2	3
136	A mathematical model for the conservation of forestry resources with two discrete time delays. Modeling Earth Systems and Environment, 2017, 3, 1011-1027.	1.9	3
137	Stability and Hopf Bifurcation of a Delayed Epidemic Model of Computer Virus with Impact of Antivirus Software. Discrete Dynamics in Nature and Society, 2018, 2018, 1-18.	0.5	3
138	Explosive tritrophic food chain models with interference: A comparative study. Journal of the Franklin Institute, 2020, 357, 385-413.	1.9	3
139	MODELING ZIKA TRANSMISSION DYNAMICS: PREVENTION AND CONTROL. Journal of Biological Systems, 2020, 28, 719-749.	0.5	3
140	Exploring Complex Dynamics of Spatial Predator–Prey System: Role of Predator Interference and Additional Food. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2020, 30, 2050102.	0.7	3
141	Nonlinear Phenomena in Biology and Medicine. Computational and Mathematical Methods in Medicine, 2012, 2012, 1-2.	0.7	2
142	Dynamics of a modified Hindmarsh–Rose neural model with random perturbations: Moment analysis and firing activities. Physica A: Statistical Mechanics and Its Applications, 2017, 486, 144-160.	1.2	2
143	Dynamics of a delayed SIR model for the transmission of PRRSV among a swine population. Advances in Difference Equations, 2020, 2020, .	3.5	2
144	Pattern formation in an explosive food chain model: the case of "apparent―mutualism. European Physical Journal Plus, 2021, 136, 1.	1.2	2

0

#	Article	IF	CITATIONS
145	Diffusion driven finite time blow-up and pattern formation in a mutualistic preys-sexually reproductive predator system: A comparative study. Chaos, Solitons and Fractals, 2021, 147, 110929.	2.5	2
146	Cross diffusion induced spatiotemporal pattern in diffusive nutrient–plankton model with nutrient recycling. Mathematics and Computers in Simulation, 2022, 202, 246-272.	2.4	2
147	Extinction and coexistence of competing prey species in ecological systems. Journal of Computational Methods in Sciences and Engineering, 2006, 6, 131-150.	0.1	1
148	SPATIOTEMPORAL TRANSMISSION DYNAMICS OF RECENT EBOLA OUTBREAK IN SIERRA LEONE, WEST AFRICA: IMPACT OF CONTROL MEASURES. Journal of Biological Systems, 2017, 25, 369-397.	0.5	1
149	Parametric Excitation and Hopf Bifurcation Analysis of a Time Delayed Nonlinear Feedback Oscillator. International Journal of Applied and Computational Mathematics, 2020, 6, 1.	0.9	1
150	Instabilities and Patterns in Zooplankton-Phytoplankton Dynamics: Effect of Spatial Heterogeneity. Communications in Computer and Information Science, 2012, , 229-236.	0.4	1
151	Modeling the Complex Dynamics of Epidemic Spread Under Allee Effect. Advances in Intelligent Systems and Computing, 2014, , 117-124.	0.5	1
152	Dynamic relationship between the mutual interference and gestation delays of a hybrid tritrophic food chain model. ANZIAM Journal, 0, 59, 370.	0.0	1
153	Combating COVID-19 crisis and predicting the second wave in Europe: an Age-structured modeling. Journal of Applied Mathematics and Computing, 2022, , 1-21.	1.2	1
154	Modelling the Removal of Primary and Secondary Air Pollutants by Precipitation. International Journal of Nonlinear Sciences and Numerical Simulation, 2006, 7, .	0.4	0
155	Can the control of invasive species be left to chance?. Natural Resources & Engineering, 2016, 1, 13-25.	0.3	0
156	Parameter estimation in a spiking-bursting H-R neural model with random fluctuation. Differential Equations and Dynamical Systems, 2017, , 1.	0.5	0
157	A delayed synthetic drug transmission model with two stages of addiction and Holling Type-II functional response. AIMS Mathematics, 2021, 6, 1-22.	0.7	0
158	Introduction to Diffusive Processes. , 2021, , 1-40.		0
159	Brain Dynamics: Neural Systems in Space and Time. , 2021, , 331-411.		0
160	Modeling the Transmission Dynamics of Zika Virus. , 2021, , 267-330.		0
161	Modeling the Epidemic Spread and Outbreak of Ebola Virus. , 2021, , 215-266.		0

162 Reaction–Diffusion Modeling. , 2021, , 41-109.

#	Article	IF	CITATIONS
163	Modeling Virus Dynamics in Time and Space. , 2021, , 111-214.		Ο
164	An analytical scheme on complete integrability of 2D biophysical excitable systems. Physica A: Statistical Mechanics and Its Applications, 2021, 573, 125924.	1.2	0
165	Conserving the European Bonelli's eagle in spatiotemporal domain: Lesson from its feeding pattern. Computational and Mathematical Methods, 2021, 3, e1181.	0.3	Ο
166	Crisis-Limited Chaotic Dynamics in an Eco-epidemiological System of the Salton Sea. Communications in Computer and Information Science, 2012, , 201-209.	0.4	0
167	Modeling the Spread and Outbreak Dynamics of Avian Influenza (H5N1) Virus and Its Possible Control. , 2013, , 227-250.		Ο
168	Special Issue on Nonlinear Models in Biosignaling, Biosensor and Neural Systems—Modeling, Simulations and Applications. Differential Equations and Dynamical Systems, 2021, 29, 749-750.	0.5	0