LuÃ-s G. Dias

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2974513/publications.pdf

Version: 2024-02-01

		201674	197818
80	2,716	27	49
papers	citations	h-index	g-index
81	81	81	3113
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Antioxidant and antimicrobial effects of phenolic compounds extracts of Northeast Portugal honey. Food and Chemical Toxicology, 2008, 46, 3774-3779.	3.6	392
2	Physicochemical, microbiological and antimicrobial properties of commercial honeys from Portugal. Food and Chemical Toxicology, 2010, 48, 544-548.	3.6	227
3	Antioxidant properties, total phenols and pollen analysis of propolis samples from Portugal. Food and Chemical Toxicology, 2008, 46, 3482-3485.	3.6	208
4	An electronic tongue taste evaluation: Identification of goat milk adulteration with bovine milk. Sensors and Actuators B: Chemical, 2009, 136, 209-217.	7.8	162
5	Voltammetric aptasensors for protein disease biomarkers detection: A review. Biotechnology Advances, 2016, 34, 941-953.	11.7	87
6	Comparative study of different Portuguese samples of propolis: Pollinic, sensorial, physicochemical, microbiological characterization and antibacterial activity. Food and Chemical Toxicology, 2012, 50, 4246-4253.	3.6	76
7	Bioactive Components and Antioxidant and Antibacterial Activities of Different Varieties of Honey: A Screening Prior to Clinical Application. Journal of Agricultural and Food Chemistry, 2019, 67, 688-698.	5.2	7 3
8	An electronic tongue for honey classification. Mikrochimica Acta, 2008, 163, 97-102.	5.0	67
9	Single-cultivar extra virgin olive oil classification using a potentiometric electronic tongue. Food Chemistry, 2014, 160, 321-329.	8.2	67
10	Sensory intensity assessment of olive oils using an electronic tongue. Talanta, 2016, 146, 585-593.	5.5	52
11	Crops use-efficiency of nitrogen from manures permitted in organic farming. European Journal of Agronomy, 2006, 25, 328-335.	4.1	51
12	Semi-quantitative and quantitative analysis of soft drinks using an electronic tongue. Sensors and Actuators B: Chemical, 2011, 154, 111-118.	7.8	48
13	Electrochemical aptasensor for human osteopontin detection using a DNA aptamer selected by SELEX. Analytica Chimica Acta, 2017, 987, 25-37.	5.4	46
14	Monitoring olive oils quality and oxidative resistance during storage using an electronic tongue. LWT - Food Science and Technology, 2016, 73, 683-692.	5.2	42
15	Quantification of table olives' acid, bitter and salty tastes using potentiometric electronic tongue fingerprints. LWT - Food Science and Technology, 2017, 79, 394-401.	5.2	41
16	Practical procedure for discriminating monofloral honey with a broad pollen profile variability using an electronic tongue. Talanta, 2014, 128, 284-292.	5.5	38
17	Microbiological Assessment, Nutritional Characterization and Phenolic Compounds of Bee Pollen from Mellipona mandacaia Smith, 1983. Molecules, 2015, 20, 12525-12544.	3.8	38
18	Comprehensive Study of Honey with Protected Denomination of Origin and Contribution to the Enhancement of Legal Specifications. Molecules, 2012, 17, 8561-8577.	3.8	36

#	Article	IF	CITATIONS
19	Sensory classification of table olives using an electronic tongue: Analysis of aqueous pastes and brines. Talanta, 2017, 162, 98-106.	5 . 5	36
20	A taste sensor device for unmasking admixing of rancid or winey-vinegary olive oil to extra virgin olive oil. Computers and Electronics in Agriculture, 2018, 144, 222-231.	7.7	35
21	UV spectrophotometry method for the monitoring of galacto-oligosaccharides production. Food Chemistry, 2009, 113, 246-252.	8.2	34
22	A novel approach for honey pollen profile assessment using an electronic tongue and chemometric tools. Analytica Chimica Acta, 2015, 900, 36-45.	5.4	33
23	Development of an electrochemical RNA-aptasensor to detect human osteopontin. Biosensors and Bioelectronics, 2015, 71, 332-341.	10.1	32
24	Application of an electronic tongue as a single-run tool for olive oils' physicochemical and sensory simultaneous assessment. Talanta, 2019, 197, 363-373.	5 . 5	30
25	Raw bovine meat fatty acids profile as an origin discriminator. Food Chemistry, 2008, 109, 840-847.	8.2	29
26	An electronic tongue for gliadins semi-quantitative detection in foodstuffs. Talanta, 2011, 83, 857-864.	5 . 5	29
27	Monovarietal extra-virgin olive oil classification: a fusion of human sensory attributes and an electronic tongue. European Food Research and Technology, 2016, 242, 259-270.	3.3	29
28	Discrimination of Olive Oil by Cultivar, Geographical Origin and Quality Using Potentiometric Electronic Tongue Fingerprints. JAOCS, Journal of the American Oil Chemists' Society, 2017, 94, 1417-1429.	1.9	28
29	Application of a lab-made electronic nose for extra virgin olive oils commercial classification according to the perceived fruitiness intensity. Talanta, 2021, 226, 122122.	5 . 5	28
30	Dairy products discrimination according to the milk type using an electrochemical multisensor device coupled with chemometric tools. Journal of Food Measurement and Characterization, 2018, 12, 2385-2393.	3.2	27
31	An electronic tongue for juice level evaluation in non-alcoholic beverages. Procedia Chemistry, 2009, 1, 1023-1026.	0.7	26
32	Application of an electronic tongue for Tunisian olive oils' classification according to olive cultivar or physicochemical parameters. European Food Research and Technology, 2017, 243, 1459-1470.	3.3	26
33	Chemometric classification of several olive cultivars from $Tr\tilde{A}_i$ s-os-Montes region (northeast of) Tj ETQq1 1 0.78 105, 65-73.	4314 rgB1 3.5	Overlock I (25
34	Standard methods for pollen research. Journal of Apicultural Research, 2021, 60, 1-109.	1.5	25
35	Perception of olive oils sensory defects using a potentiometric taste device. Talanta, 2018, 176, 610-618.	5.5	24
36	Effect of processing conditions on the bioactive compounds and biological properties of bee pollen. Journal of Apicultural Research, 2016, 55, 357-365.	1.5	23

#	Article	IF	CITATIONS
37	Evaluation of extra-virgin olive oils shelf life using an electronic tongueâ€"chemometric approach. European Food Research and Technology, 2017, 243, 597-607.	3.3	23
38	Effect of Cultivar on Sensory Characteristics, Chemical Composition, and Nutritional Value of Stoned Green Table Olives. Food and Bioprocess Technology, 2012, 5, 1733-1742.	4.7	22
39	Olive Oil Total Phenolic Contents and Sensory Sensations Trends during Oven and Microwave Heating Processes and Their Discrimination Using an Electronic Tongue. Journal of Food Quality, 2018, 2018, 1-10.	2.6	21
40	Evaluation of healthy and sensory indexes of sweetened beverages using an electronic tongue. Analytica Chimica Acta, 2014, 848, 32-42.	5.4	20
41	Volatile Composition and Sensory Properties of Mead. Microorganisms, 2019, 7, 404.	3.6	20
42	Propolis influence on erythrocyte membrane disorder (hereditary spherocytosis): A first approach. Food and Chemical Toxicology, 2011, 49, 520-526.	3.6	18
43	Assessment of Table Olives' Organoleptic Defect Intensities Based on the Potentiometric Fingerprint Recorded by an Electronic Tongue. Food and Bioprocess Technology, 2017, 10, 1310-1323.	4.7	18
44	Honey Evaluation Using Electronic Tongues: An Overview. Chemosensors, 2018, 6, 28.	3.6	17
45	Assessment of goat fat depots using ultrasound technology and multiple multivariate prediction models1. Journal of Animal Science, 2010, 88, 572-580.	0.5	16
46	Application of a potentiometric electronic tongue for assessing phenolic and volatile profiles of Arbequina extra virgin olive oils. LWT - Food Science and Technology, 2018, 93, 150-157.	5. 2	15
47	Electrochemical Sensor-Based Devices for Assessing Bioactive Compounds in Olive Oils: A Brief Review. Electronics (Switzerland), 2018, 7, 387.	3.1	14
48	Spanish honeys with quality brand: a multivariate approach to physicochemical parameters, microbiological quality, and floral origin. Journal of Apicultural Research, 2019, 58, 92-103.	1.5	14
49	Dietary Sugars Analysis: Quantification of Fructooligossacharides during Fermentation by HPLC-RI Method. Frontiers in Nutrition, 2014, $1,11.$	3.7	13
50	Electronic tongue: a versatile tool for mineral and fruit-flavored waters recognition. Journal of Food Measurement and Characterization, 2016, 10, 264-273.	3.2	13
51	Unmasking Sensory Defects of Olive Oils Flavored with Basil and Oregano Using an Electronic Tongueâ€Chemometric Tool. JAOCS, Journal of the American Oil Chemists' Society, 2019, 96, 751-760.	1.9	13
52	Sweet peppers discrimination according to agronomic production mode and maturation stage using a chemical-sensory approach and an electronic tongue. Microchemical Journal, 2020, 157, 105034.	4. 5	13
53	Sugars' Quantifications Using a Potentiometric Electronic Tongue with Cross-Selective Sensors: Influence of an Ionic Background. Chemosensors, 2019, 7, 43.	3.6	12
54	Development of an Electrochemical Aptasensor for the Detection of Human Osteopontin. Procedia Engineering, 2014, 87, 316-319.	1.2	11

#	Article	IF	CITATIONS
55	Analysis of Milk Using a Portable Potentiometric Electronic Tongue Based on Five Polymeric Membrane Sensors. Frontiers in Chemistry, 2021, 9, 706460.	3.6	11
56	Monitoring the debittering of traditional stoned green table olives during the aqueous washing process using an electronic tongue. LWT - Food Science and Technology, 2019, 109, 327-335.	5.2	10
57	Intramuscular Fat Prediction Using Color and Image Analysis of BÃsaro Pork Breed. Foods, 2021, 10, 143.	4.3	10
58	Analysis of Phenolic Content in Grape Seeds and Skins by Means of a Bio-Electronic Tongue. Sensors, 2020, 20, 4176.	3.8	9
59	Assessing acrylamide content in sterilized Californian-style black table olives using HPLC-MS-QQQ and a potentiometric electronic tongue. LWT - Food Science and Technology, 2020, 129, 109605.	5.2	9
60	Evaluation of soil nitrogen availability by growing tufts of nitrophilic species in an intensively grazed biodiverse legume-rich pasture. Spanish Journal of Agricultural Research, 2010, 8, 1058.	0.6	9
61	Cyclic voltammetry: A tool to quantify 2,4,6-trichloroanisole in aqueous samples from cork planks boiling industrial process. Talanta, 2013, 117, 438-444.	5.5	8
62	The Role of Honey and Propolis in the Treatment of Infected Wounds. , 2014, , 221-234.		8
63	Quantification of three phenolic classes and total phenolic content of propolis extracts using a single UV-vis spectrum. Journal of Apicultural Research, 2017, 56, 569-580.	1.5	8
64	Detection of biogenic amines in mead of social bee. LWT - Food Science and Technology, 2020, 121, 108969.	5. 2	8
65	Determination of 2,4,6-Trichloroanisole by Cyclic Voltammetry. Procedia Engineering, 2012, 47, 1125-1128.	1.2	7
66	Electronic tongues and aptasensors. , 2017, , 371-402.		7
67	Electrochemical Aptasensor Array for Multiple Detection of Human Osteopontin. Portugaliae Electrochimica Acta, 2018, 36, 1-9.	1.1	7
68	Electrochemical Multi-sensors Device Coupled with Heuristic or Meta-heuristic Selection Algorithms for Single-cultivar Olive Oil Classification. Procedia Engineering, 2014, 87, 192-195.	1.2	6
69	An electronic tongue as a classifier tool for assessing perfume olfactory family and storage time-period. Talanta, 2020, 208, 120364.	5. 5	6
70	Simultaneously prediction of sheep and goat carcass composition and body fat depots using in vivo ultrasound measurements and live weight. Research in Veterinary Science, 2020, 133, 180-187.	1.9	6
71	Enose Lab Made with Vacuum Sampling: Quantitative Applications. Chemosensors, 2022, 10, 261.	3.6	6
72	A Size Exclusion HPLC Method for Evaluating the Individual Impacts of Sugars and Organic Acids on Beverage Global Taste by Means of Calculated Dose-Over-Threshold Values. Chromatography (Basel), 2014, 1, 141-158.	1.2	5

#	Article	lF	Citations
73	Olive Oil Quality and Sensory Changes During Houseâ€Use Simulation and Temporal Assessment Using an Electronic Tongue. JAOCS, Journal of the American Oil Chemists' Society, 2018, 95, 1121-1137.	1.9	5
74	CHAPTER 14. UV Spectrophotometry Method for Dietary Sugars. Food and Nutritional Components in Focus, 2012, , 229-248.	0.1	3
75	Mead Production Using Immobilized Cells of Saccharomyces cerevisiae: Reuse of Sodium Alginate Beads. Processes, 2021, 9, 724.	2.8	2
76	Electrochemical Sensors for Assessing Antioxidant Capacity of Bee Products., 2016,, 196-223.		2
77	Characterization of commercial Tunisian monovarietal olive oils produced from autochthonous olive cultivars. Emirates Journal of Food and Agriculture, 0, , 581.	1.0	1
78	Gliadins in Foods and the Electronic Tongue. , 2016, , 179-188.		0
79	Use of the electronic tongue as a tool for the characterization of <i>Melipona scutellaris</i> Latreille honey. Journal of Apicultural Research, 2022, 61, 79-90.	1.5	O
80	P2.1.2 Performance Study of a Potentiometric Sensor Array for Lactic Proteins Analysis., 2012,,.		0