
Júlio C Viana

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2974453/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanical properties of poly(ε aprolactone) and poly(lactic acid) blends. Journal of Applied Polymer Science, 2009, 112, 345-352.	1.3	182
2	Effect of carbon nanotube type and functionalization on the electrical, thermal, mechanical and electromechanical properties of carbon nanotube/styrene–butadiene–styrene composites for large strain sensor applications. Composites Part B: Engineering, 2014, 61, 136-146.	5.9	166
3	Cold Crystallization of PLLA Studied by Simultaneous SAXS and WAXS. Macromolecular Materials and Engineering, 2004, 289, 910-915.	1.7	121
4	Modeling and Optimization of the Injectionâ€Molding Process: A Review. Advances in Polymer Technology, 2018, 37, 429-449.	0.8	99
5	The thermomechanical environment and the microstructure of an injection moulded polypropylene copolymer. Polymer, 2002, 43, 4185-4196.	1.8	96
6	Chemistry of solid metal-based inks and pastes for printed electronics – A review. Applied Materials Today, 2019, 15, 416-430.	2.3	90
7	Development of the skin layer in injection moulding: phenomenological model. Polymer, 2004, 45, 993-1005.	1.8	82
8	Extruded thermoplastic elastomers styrene–butadiene–styrene/carbon nanotubes composites for strain sensor applications. Composites Part B: Engineering, 2014, 57, 242-249.	5.9	82
9	Electro-mechanical properties of triblock copolymer styrene–butadiene–styrene/carbon nanotube composites for large deformation sensor applications. Sensors and Actuators A: Physical, 2013, 201, 458-467.	2.0	76
10	Full elastic constitutive relation of non-isotropic aligned-CNT/PDMS flexible nanocomposites. Nanoscale, 2013, 5, 4847.	2.8	67
11	Printing Technologies on Flexible Substrates for Printed Electronics. , 0, , .		66
12	Mechanical, electrical and electro-mechanical properties of thermoplastic elastomer styrene–butadiene–styrene/multiwall carbon nanotubes composites. Journal of Materials Science, 2013, 48, 1172-1179.	1.7	65
13	Recent Developments in the Optimization of the Bulk Heterojunction Morphology of Polymer: Fullerene Solar Cells. Materials, 2018, 11, 2560.	1.3	63
14	Effect of processing conditions on morphology and mechanical properties of injection-molded poly(l-lactic acid). Polymer Engineering and Science, 2007, 47, 1141-1147.	1.5	60
15	Dynamic mechanical behavior of starch-based scaffolds in dry and physiologically simulated conditions: Effect of porosity and pore size. Acta Biomaterialia, 2008, 4, 950-959.	4.1	60
16	Characterization of PET nanocomposites produced by different meltâ€based production methods. Journal of Applied Polymer Science, 2007, 106, 1659-1669.	1.3	56
17	The double porogen approach as a new technique for the fabrication of interconnected poly(L-lactic) Tj ETQq1 1 2007, 18, 185-193.	0.784314 1.7	rgBT /Overlo 53
18	Bi-layered constructs based on poly(l-lactic acid) and starch for tissue engineering of osteochondral defects. Materials Science and Engineering C, 2008, 28, 80-86.	3.8	50

#	Article	IF	CITATIONS
19	Highly Sensitive Piezoresistive Graphene-Based Stretchable Composites for Sensing Applications. ACS Applied Materials & Interfaces, 2019, 11, 46286-46295.	4.0	50
20	Development of porous lamellar poly(l-lactic acid) scaffolds by conventional injection molding process. Acta Biomaterialia, 2008, 4, 887-896.	4.1	48
21	Structural interpretation of the strain-rate, temperature and morphology dependence of the yield stress of injection molded semicrystalline polymers. Polymer, 2005, 46, 11773-11785.	1.8	46
22	Polymeric materials for impact and energy dissipation. Plastics, Rubber and Composites, 2006, 35, 260-267.	0.9	45
23	Morphology and mechanical properties of injection molded poly(ethylene terephthalate). Polymer Engineering and Science, 2004, 44, 2174-2184.	1.5	42
24	Oriented morphology and enhanced mechanical properties of poly(l-lactic acid) from shear controlled orientation in injection molding. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 490, 81-89.	2.6	32
25	Nanocomposite Flexible Pressure Sensor for Biomedical Applications. Procedia Engineering, 2011, 25, 140-143.	1.2	32
26	Polymer Nanocomposite-Based Strain Sensors with Tailored Processability and Improved Device Integration. ACS Applied Nano Materials, 2018, 1, 3015-3025.	2.4	32
27	Title is missing!. Journal of Materials Science, 2001, 36, 4411-4418.	1.7	29
28	Development of polyhydroxyalkanoates/poly(lactic acid) composites reinforced with cellulosic fibers. Composites Part B: Engineering, 2014, 60, 603-611.	5.9	29
29	Inkjet Printed Pressure Sensing Platform for Postural Imbalance Monitoring. IEEE Transactions on Instrumentation and Measurement, 2015, 64, 2813-2820.	2.4	29
30	A Review on Materials and Technologies for Organic Largeâ€Area Electronics. Advanced Materials Technologies, 2021, 6, 2001016.	3.0	27
31	The thermomechanical environment and the mechanical properties of injection moldings. Polymer Engineering and Science, 2004, 44, 1522-1533.	1.5	26
32	Production of silver nanoparticles by green synthesis using artichoke (<i>Cynara scolymus</i> L.) aqueous extract and measurement of their electrical conductivity. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2018, 9, 045002.	0.7	26
33	The Tensile Behaviour of an Injection-Moulded Propylene-Ethylene Copolymer: the Effect of the Local Thermomechanical Processing Conditions. Polymer International, 1997, 43, 159-166.	1.6	25
34	Mechanical characterization of polyhydroxyalkanoate and poly(lactic acid) blends. Journal of Thermoplastic Composite Materials, 2015, 28, 195-213.	2.6	24
35	Prediction of fiber orientation in a rotating compressing and expanding mold. Polymer Engineering and Science, 2008, 48, 1405-1413.	1.5	22
36	A Microinjected 3-Axis Thermal Accelerometer. Procedia Engineering, 2011, 25, 607-610.	1.2	20

#	Article	IF	CITATIONS
37	Using Multi-objective Evolutionary Algorithms for Optimization of the Cooling System in Polymer Injection Molding. International Polymer Processing, 2012, 27, 213-223.	0.3	20
38	Structure–Properties Relationships in Thermoplastic Polyurethane Elastomer Nanocomposites: Interactions between Polymer Phases and Nanofillers. Macromolecular Materials and Engineering, 2015, 300, 1153-1162.	1.7	20
39	Melt blending and characterization of carbon nanoparticles-filled thermoplastic polyurethane elastomers. Journal of Elastomers and Plastics, 2015, 47, 647-665.	0.7	20
40	Aligned carbon nanotube based sensors for strain sensing applications. Sensors and Actuators A: Physical, 2019, 289, 157-164.	2.0	20
41	A review on inâ€mold electronics technology. Polymer Engineering and Science, 2022, 62, 967-990.	1.5	20
42	Effects of the strain rate and temperature in stress–strain tests: study of the glass transition of a polyamide-6. Polymer Testing, 2001, 20, 937-943.	2.3	19
43	Using multiobjective evolutionary algorithms in the optimization of operating conditions of polymer injection molding. Polymer Engineering and Science, 2010, 50, 1667-1678.	1.5	19
44	Stress–strain experiments as a mechanical spectroscopic technique to characterise the glass transition dynamics in poly(ethylene terephthalate). Polymer Testing, 2006, 25, 953-960.	2.3	18
45	Co-injection molding of immiscible polymers: Skin-core structure and adhesion studies. Polymer Engineering and Science, 2011, 51, 2398-2407.	1.5	18
46	Microstructure of PP/clay Nanocomposites Produced by Shear Induced Injection Moulding. , 2012, 1, 34-43.		18
47	Toughness distribution in complex PP/nanoclay injected mouldings. Composites Science and Technology, 2013, 74, 28-36.	3.8	17
48	Modeling of Plasticating Injection Molding – Experimental Assessment. International Polymer Processing, 2014, 29, 558-569.	0.3	16
49	Prediction of the tensile impact behavior of injection molded samples from quasi-static data. Polymer Engineering and Science, 1999, 39, 1463-1472.	1.5	15
50	Thermal Characterization of Polyhydroxyalkanoates and Poly(lactic acid) Blends Obtained by Injection Molding. Polymer-Plastics Technology and Engineering, 2015, 54, 350-356.	1.9	15
51	Flexible Pressure Sensors: Modeling and Experimental Characterization. Procedia Engineering, 2012, 47, 1177-1180.	1.2	14
52	Fiber orientation in divergent/convergent flows in expansion and compression injection molding. Polymer Composites, 2006, 27, 539-551.	2.3	13
53	Carbonaceous Filler Type and Content Dependence of the Physical-Chemical and Electromechanical Properties of Thermoplastic Elastomer Polymer Composites. Materials, 2019, 12, 1405.	1.3	13
54	Conductive long fibre reinforced thermoplastics by using carbon nanofibres. Plastics, Rubber and Composites, 2006, 35, 247-252.	0.9	12

#	Article	IF	CITATIONS
55	Experimental characterization and computational simulations of the impact behavior of injection-molded polymers. Polymer Engineering and Science, 2007, 47, 337-346.	1.5	12
56	Characterization of PET Nanocomposites with Different Nanofillers. Solid State Phenomena, 0, 151, 113-117.	0.3	12
57	Solventless processing of conjugated polymers—A review. Synthetic Metals, 2014, 197, 23-33.	2.1	12
58	Analysis of the bonding process and materials optimization for mitigating the Yellow Border defect on optically bonded automotive display panels. Displays, 2017, 48, 21-28.	2.0	12
59	Morphologyâ^`performance relationship of polypropyleneâ^'nanoclay composites processed by shear controlled injection moulding. Polymer International, 2013, 62, 1589-1599.	1.6	11
60	Enhanced printability of thermoplastic polyurethane substrates by silica particles surface interactions. Applied Surface Science, 2016, 360, 198-206.	3.1	11
61	Distributed Optical Fiber Sensors for PCB-Strain Analysis. IEEE Transactions on Industrial Electronics, 2019, 66, 8181-8188.	5.2	11
62	Novel Morphologies Produced by Active Shear Rotation during Injection Molding. Macromolecular Materials and Engineering, 2007, 292, 655-665.	1.7	10
63	Nanostructured Composites Based on Polyethylene–Polyamide Blends. II. Probing the Orientation in Polyethylene–Polyamide Nanocomposites and Their Precursors. Journal of Macromolecular Science - Physics, 2004, 43, 163-176.	0.4	9
64	Static and Dynamic Modeling of a 3-Axis Thermal Accelerometer. Procedia Engineering, 2012, 47, 973-976.	1.2	9
65	Effect of the impact conditions on the mechanical properties of injectionâ€molded parts. Polymer Engineering and Science, 2012, 52, 1845-1853.	1.5	9
66	Solidâ€state structural evolution of poly(ethylene terephthalate) during step uniaxial stretching from different initial morphologies: An <i>in situ</i> wide angle xâ€ray scattering study. Journal of Applied Polymer Science, 2012, 124, 470-483.	1.3	9
67	Thermomechanical environment characterisation in injection moulding and its relation to the mechanical properties of talc-filled polypropylene. Journal of Materials Science, 2013, 48, 2597-2607.	1.7	9
68	Low temperature solid state processing of pure P3HT fibers. AIP Advances, 2013, 3, .	0.6	9
69	Using Multi-Objective Evolutionary Algorithms to Optimize Mechanical Properties of Injection Molded Parts. International Polymer Processing, 2005, 20, 274-285.	0.3	8
70	Structural development of poly(ethylene terephthalate) during uniaxial stretching above the glassâ€transition temperature: Study of the statistical influence of the stretching variables. Journal of Applied Polymer Science, 2011, 120, 1253-1265.	1.3	8
71	A Comparative Study between Knocked-Down Aligned Carbon Nanotubes and Buckypaper-Based Strain Sensors. Materials, 2019, 12, 2013.	1.3	8
72	The local thermomechanical conditions and the fracture behavior of an injection-molded poly(oxymethylene). Polymer Engineering and Science, 2006, 46, 181-187.	1.5	7

#	Article	IF	CITATIONS
73	Fiber orientation in injection molding with rotating flow. Polymer Engineering and Science, 2008, 48, 395-404.	1.5	7
74	Uni―and biaxial impact behavior of doubleâ€gated nanoclayâ€reinforced polypropylene injection moldings. Polymer Engineering and Science, 2013, 53, 724-733.	1.5	7
75	<i>In situ</i> WAXS/SAXS structural evolution study during uniaxial stretching of poly(ethylene) Tj ETQq1 1 0.78 nanocomposites. Journal of Applied Polymer Science, 2013, 128, 2884-2895.	4314 rgBT 1.3	7 7
76	Nano and Hybrid Composites Based on Poly(ethylene terephthalate): Blending and Characterization. Advances in Polymer Technology, 2014, 33, .	0.8	7
77	Piezo-resistive behaviour at high strain levels of PEDOT:PSS printed on a flexible polymeric substrate by a novel surface treatment. Journal of Materials Science: Materials in Electronics, 2017, 28, 2563-2573.	1.1	7
78	Optimisation of the green synthesis of Cu/Cu2O particles for maximum yield production and reduced oxidation for electronic applications. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 263, 114807.	1.7	7
79	Thermoelectric response of a screen printed silver-nickel thermocouple. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 264, 114929.	1.7	7
80	Mold for Manipulation Microstructure Development. International Polymer Processing, 2005, 20, 27-34.	0.3	7
81	Structure evolution of PET under step-wise and continuous deformation modes: the effect of stress relaxation on the strain-induced morphology. International Journal of Material Forming, 2008, 1, 661-665.	0.9	6
82	Pressure sensing platform for health monitoring. , 2014, , .		6
83	Thiophene- and Carbazole-Substituted N-Methyl-Fulleropyrrolidine Acceptors in PffBT4T-2OD Based Solar Cells. Materials, 2020, 13, 1267.	1.3	6
84	Operational Load Monitoring of a Composite Panel Using Artificial Neural Networks. Sensors, 2020, 20, 2534.	2.1	6
85	Polypropylene/Clay Nanocomposites Produced by Shear Controlled Orientation in Injection Moulding: Deformation and Fracture Properties. Strojniski Vestnik/Journal of Mechanical Engineering, 2013, 59, 697-704.	0.6	5
86	Solid-state low-temperature extrusion of P3HT ribbons. Applied Physics A: Materials Science and Processing, 2014, 117, 2079-2086.	1.1	5
87	Active flow control using dense wireless sensor and actuator networks. Microprocessors and Microsystems, 2018, 61, 279-295.	1.8	5
88	Real Time X-Ray Scattering Studies on the Evolution of Morphology During Heating of a Shrinkable Polyethylene Film. Mechanics of Time-Dependent Materials, 2004, 8, 225-233.	2.3	4
89	Extensibility of the Inter-Lamellar Amorphous Layer and the Mechanical Behaviour of Polyethylene. Materials Science Forum, 2006, 514-516, 1186-1190.	0.3	4
90	Non-Conventional Injection Moulding of a PP/PC-ABS Blend. Materials Science Forum, 2006, 514-516, 858-862.	0.3	4

#	Article	IF	CITATIONS
91	Nanostructure Evolution during Uni-Axial Deformation of PET – A WAXS and SAXS Study Using Synchrotron Radiation. Materials Science Forum, 2006, 514-516, 1583-1587.	0.3	4
92	Applying flow simulations in the development process of injection moulded thermoplastic parts. International Journal of Materials and Product Technology, 2016, 52, 76.	0.1	4
93	Characterization of PP/TPV/MMT Ternary Nanocomposites Produced by Injection Molding. Macromolecular Symposia, 2017, 373, 1600153.	0.4	4
94	Mechanical properties of glass fiber reinforced polypropylene injection molded with a rotation mold. Polymer Engineering and Science, 2006, 46, 1598-1607.	1.5	3
95	Osteochondral Tissue Engineering Constructs with a Cartilage Part Made of Poly(L-lactic Acid) / Starch Blend and a Bioactive Poly(L-Lactic Acid) Composite Layer for Subchondral Bone. Key Engineering Materials, 2006, 309-311, 1109-1112.	0.4	3
96	Study on processing–microstructure–properties relationships of extruded profiles. Plastics, Rubber and Composites, 2006, 35, 173-180.	0.9	3
97	Thermomechanical processing environment and morphology development of a thermotropic polymer liquid crystal. Journal of Applied Polymer Science, 2010, 115, 2991-3004.	1.3	3
98	Flexible sensor for blood pressure measurement. , 2011, 2011, 512-5.		3
99	<i>In situ</i> WAXS/SAXS structural evolution study during uniaxial stretching of poly(ethylene) Tj ETQq1 1 0.7 poly(ethylene terephthalate)/silica nanocomposites. Journal of Applied Polymer Science, 2014, 131, .	'84314 rgB1 1.3	「 /Overlock 3
100	Controlled temperature jaws to improve material characterization by uniaxial hot tensile test. Polymer Testing, 2006, 25, 772-781.	2.3	2
101	Manipulation of the Microstructure of Injection Moldings in a Special Mold and Their Mechanical Behavior. Macromolecular Materials and Engineering, 2006, 291, 1422-1435.	1.7	2
102	Influence of the Interaction Potential Parameters on the Mechanical Response of Simulated Semi-Crystalline Polymeric Materials. Materials Science Forum, 2006, 514-516, 810-814.	0.3	2
103	Mechanical properties of glass fibre reinforced polypropylene disks produced by rotating, expansion and compression injection moulding. Journal of Materials Science, 2007, 42, 5203-5216.	1.7	2
104	Impact performance prediction of injection-molded talc-filled polypropylene through thermomechanical environment assessment. International Journal of Advanced Manufacturing Technology, 2015, 77, 873-883.	1.5	2
105	Active flow control for aerospace operations by means of a dense wireless sensor and actuator network. , 2016, , .		2
106	Comprehensive study on the relationships between the processing, the microstructure, and mechanical properties of injection molded polypropylenes. Polymer Engineering and Science, 2018, 58, E215.	1.5	2
107	PffBT4T-2OD Based Solar Cells with Aryl-Substituted N-Methyl-Fulleropyrrolidine Acceptors. Materials, 2019, 12, 4100.	1.3	2
108	Multi-Objective Optimization of Gate Location and Processing Conditions in Injection Molding Using MOEAs: Experimental Assessment. Lecture Notes in Computer Science, 2015, , 373-387.	1.0	2

#	Article	IF	CITATIONS
109	Processing-Microstructure-Properties Relationships in Extrusion of Thermoplastics. Materials Science Forum, 2006, 514-516, 833-837.	0.3	1
110	The Thermomechanical Processing Conditions and the Mechanical Properties of Injection Molded PP/PC Blends. Materials Science Forum, 2008, 587-588, 553-557.	0.3	1
111	Development of Automotive Plastic Pillars for Preventing Occupant Injuries by Finite Element Simulations: The Role of Material Properties. Materials Science Forum, 2008, 587-588, 956-960.	0.3	1
112	Combining experimental and computed data for effective SHM of critical structural components. , 2011, , .		1
113	Mechanical Behavior of the Lamellar Structure in Semi-Crystalline Polymers. Materials Science Forum, 2012, 730-732, 1006-1011.	0.3	1
114	Design of a 3-axis thermal accelerometer using an electro-thermo-fluidic model. , 2012, , .		1
115	Improving Post-EVAR Surveillance with a Smart Stent-Graft. Lecture Notes in Computational Vision and Biomechanics, 2012, , 267-289.	0.5	1
116	A fully integrated three-axis thermal accelerometer. , 2013, , .		1
117	Structure-Properties Relationships in Processed Poly(ethylene terephthalate). Key Engineering Materials, 0, 554-557, 1757-1762.	0.4	1
118	Low cost pressure mapping platform for mobility monitoring applications. , 2013, , .		1
119	Influence of the local morphology on the surface tension of injection molded polypropylene. , 2014, , .		1
120	Magnetic Field Perturbations by Thermoelectric Effects. , 2019, , .		1
121	Green synthesis of Cu2O/Cu nanoparticles and conversion to Cu microparticles in one-bath reaction method for improved electrical conductivity. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2021, 12, 025009.	0.7	1
122	Graded Morphologies and the Performance of PffBT4T-2OD:PC71BM Devices Using Additive Choice. Nanomaterials, 2021, 11, 3367.	1.9	1
123	Optimisation of the Impact Behaviour of Injection Moulded Components Through Processing: A Case Study. , 2001, , .		0
124	Deformation of the lamellar structure in semi-crystalline polymers studied by computer simulations. E-Polymers, 2004, 4, .	1.3	0
125	Morphology and mechanical properties relationships in non-conventional melt manipulation injection moulding techniques. AIP Conference Proceedings, 2007, , .	0.3	0
126	Morphology and Mechanical Properties of Poly(Ethylene Terephthalate) Stretched Above the Glass Transition Temperature. AIP Conference Proceedings, 2007, , .	0.3	0

#	Article	IF	CITATIONS
127	Uniaxial Stretching above the Glass Transition Temperature of Poly(Ethylene Terephthalate) and its Effects on the Structure Development. Materials Science Forum, 0, 587-588, 529-533.	0.3	0
128	Effect of Clay Amounts on Morphology and Mechanical Performances in Multiscale PET Composites. , 2011, , .		0
129	The Use of Cellulosic Fibers Wastes to Increase the Mechanical Behaviour of Biodegradable Composites for Automotive Interior Parts. RILEM Bookseries, 2016, , 279-287.	0.2	0
130	Integrative simulation chain for improved components design: linking mould filling and structural simulations. Polymer Bulletin, 0, , 1.	1.7	0
131	Using Multi-objective Evolutionary Algorithms in the Optimization of Polymer Injection Molding. Advances in Intelligent and Soft Computing, 2009, , 357-365.	0.2	0
132	Experimental Testing and Process Parametrization. Advanced Structured Materials, 2020, , 237-263.	0.3	0
133	Comparison of numerical and experimental strain distributions in composite panel for aerospace applications. , 0, , .		0