
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2974365/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                 | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | High-Throughput and Long-Distance Transmission With >120 nm S-, C- and L-Band Signal in a 125μm<br>4-Core Fiber. Journal of Lightwave Technology, 2022, 40, 1633-1639.  | 4.6  | 8         |
| 2  | S-, C- and L-band transmission over a 157â€nm bandwidth using doped fiber and distributed Raman<br>amplification. Optics Express, 2022, 30, 10011.                      | 3.4  | 42        |
| 3  | High data-rate and long-distance wideband transmission in 125 μm diameter fibers. , 2022, , .                                                                           |      | Ο         |
| 4  | Demonstration of a 90 Tb/s, 234.8 km, C+L band unrepeatered SSMF link with bidirectional Raman amplification. Optics Express, 2022, 30, 13114.                          | 3.4  | 4         |
| 5  | Investigation of Wideband Distributed Raman Amplification in a Few-Mode Fiber Link. , 2022, , .                                                                         |      | 0         |
| 6  | 372 Tb/s Unrepeatered 213 km Transmission Over a 125 $\hat{A}\mu$ m Cladding Diameter, 4-Core MCF. , 2022, , .                                                          |      | 2         |
| 7  | High Capacity Transmission in a Coupled-Core Three-Core Multi-Core Fiber. Journal of Lightwave Technology, 2021, 39, 757-762.                                           | 4.6  | 21        |
| 8  | Highly Spectral Efficient C + L-Band Transmission Over a 38-Core-3-Mode Fiber. Journal of Lightwave<br>Technology, 2021, 39, 1048-1055.                                 | 4.6  | 22        |
| 9  | 0.61 Pb/s S, C, and L-Band Transmission in a 125î¼m Diameter 4-Core Fiber Using a Single Wideband Comb<br>Source. Journal of Lightwave Technology, 2021, 39, 1027-1032. | 4.6  | 22        |
| 10 | Field Trial of a Flexible Real-Time Software-Defined GPU-Based Optical Receiver. Journal of Lightwave<br>Technology, 2021, 39, 2358-2367.                               | 4.6  | 15        |
| 11 | Peta-bit-per-second optical communications system using a standard cladding diameter 15-mode fiber.<br>Nature Communications, 2021, 12, 4238.                           | 12.8 | 78        |
| 12 | Compensation of inter-core skew in multi-core fibers with group velocity dispersion. Optics Express, 2021, 29, 28104.                                                   | 3.4  | 4         |
| 13 | Space-division multiplexing for optical fiber communications. Optica, 2021, 8, 1186.                                                                                    | 9.3  | 265       |
| 14 | 10,000 km Straight-line Transmission using a Real-time Software-defined GPU-Based Receiver. , 2021, , .                                                                 |      | 2         |
| 15 | High Capacity and Long-Haul Transmission with Space-Division Multiplexing. , 2021, , .                                                                                  |      | 7         |
| 16 | S, C and Extended L-Band Transmission with Doped Fiber and Distributed Raman Amplification. , 2021, , .                                                                 |      | 26        |
| 17 | Experimental Evaluation of the Crosstalk Impulse Response of a Temperature Controlled Homogeneous Multi-Core Fiber. , 2021, , .                                         |      | 0         |
| 18 | Real-Time 10,000 km Straight-Line Transmission Using a Software-Defined GPU-Based Receiver. IEEE<br>Photonics Technology Letters, 2021, 33, 1519-1522.                  | 2.5  | 8         |

| #  | Article                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Crosstalk-Induced System Outage in Intensity-Modulated Direct-Detection Multi-Core Fiber<br>Transmission. Journal of Lightwave Technology, 2020, 38, 291-296.               | 4.6 | 10        |
| 20 | High Data-Rate and Long Distance MCF Transmission With 19-Core <i>C</i> + <i>L</i> band<br>Cladding-Pumped EDFA. Journal of Lightwave Technology, 2020, 38, 123-130.        | 4.6 | 29        |
| 21 | Intermodal Nonlinear Signal Distortions in Multi-Span Transmission With Few-Mode Fibers. IEEE<br>Photonics Technology Letters, 2020, 32, 1175-1178.                         | 2.5 | 3         |
| 22 | Experimental Demonstration of a Petabit per Second SDM Network Node. Journal of Lightwave Technology, 2020, , 1-1.                                                          | 4.6 | 9         |
| 23 | Digital Back Propagation in Long-Haul, MIMO-Supported, Multicore Fiber Transmission. IEEE Photonics<br>Technology Letters, 2020, 32, 730-732.                               | 2.5 | 3         |
| 24 | Wideband Intermodal Nonlinear Signal Processing With a Highly Nonlinear Few-Mode Fiber. IEEE<br>Journal of Selected Topics in Quantum Electronics, 2020, 26, 1-7.           | 2.9 | 12        |
| 25 | Clock and Data Recovery-Free Data Communications Enabled by Multi-Core Fiber With Low Thermal<br>Sensitivity of Skew. Journal of Lightwave Technology, 2020, 38, 1636-1643. | 4.6 | 9         |
| 26 | Crosstalk Impact on the Performance of Wideband Multicore-Fiber Transmission Systems. IEEE Journal of Selected Topics in Quantum Electronics, 2020, 26, 1-9.                | 2.9 | 12        |
| 27 | Wavelength Division Multiplexing of 194 Continuous Variable Quantum Key Distribution Channels.<br>Journal of Lightwave Technology, 2020, 38, 2214-2218.                     | 4.6 | 28        |
| 28 | Space-division multiplexed transmission in the S-band over 55 km few-mode fibers. Optics Express, 2020, 28, 27037.                                                          | 3.4 | 10        |
| 29 | 10.66 Peta-Bit/s Transmission over a 38-Core-Three-Mode Fiber. , 2020, , .                                                                                                  |     | 84        |
| 30 | 172 Tb/s C+L Band Transmission over 2040 km Strongly Coupled 3-Core Fiber. , 2020, , .                                                                                      |     | 22        |
| 31 | Enabling Future Fiber Networks Using Integrated Ultrafast Laser-Written Multicore Fiber Fan-outs. ,<br>2020, , .                                                            |     | 1         |
| 32 | Digital Self-Coherent Continuous Variable Quantum Key Distribution System. , 2020, , .                                                                                      |     | 2         |
| 33 | Channel Dynamics in Few-Mode Fiber Transmission Under Mechanical Vibrations. , 2020, , .                                                                                    |     | 1         |
| 34 | Real-time, Software-Defined, GPU-Based Receiver Field Trial. , 2020, , .                                                                                                    |     | 4         |
| 35 | Simple method for optimizing the DC bias of Kramers-Kronig receivers based on AC-coupled photodetectors. Optics Express, 2020, 28, 4067.                                    | 3.4 | 8         |
| 36 | Characterization and Optical Compensation of LP01 and LP11 Intra-modal Nonlinearity in Few-Mode<br>Fibers. , 2020, , .                                                      |     | 1         |

| #  | Article                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Experimental evaluation of the impact of the light source on the measurement of short-term average crosstalk in homogeneous single-mode multi-core fibers. Optics Express, 2020, 28, 35099. | 3.4 | 4         |
| 38 | Corrections to "High Capacity Transmission With Few-Mode Fibers― Journal of Lightwave Technology, 2019, 37, 3433-3433.                                                                      | 4.6 | 1         |
| 39 | Wavelength division multiplexing of continuous variable quantum key distribution and 18.3 Tbit/s data channels. Communications Physics, 2019, 2, .                                          | 5.3 | 108       |
| 40 | 1.2 Pb/s Throughput Transmission Using a 160Â\$mu\$m Cladding, 4-Core, 3-Mode Fiber. Journal of<br>Lightwave Technology, 2019, 37, 1798-1804.                                               | 4.6 | 45        |
| 41 | Crosstalk Impact on Continuous Variable Quantum Key Distribution in Multicore Fiber Transmission.<br>IEEE Photonics Technology Letters, 2019, 31, 467-470.                                  | 2.5 | 17        |
| 42 | High Capacity Transmission With Few-Mode Fibers. Journal of Lightwave Technology, 2019, 37, 425-432.                                                                                        | 4.6 | 64        |
| 43 | Characteristics of homogeneous multi-core fibers for SDM transmission. APL Photonics, 2019, 4, .                                                                                            | 5.7 | 35        |
| 44 | Pilot-Aided Joint-Channel Carrier-Phase Estimation in Space-Division Multiplexed Multicore Fiber<br>Transmission. Journal of Lightwave Technology, 2019, 37, 1133-1142.                     | 4.6 | 9         |
| 45 | Investigation of Intermodal Nonlinear Signal Distortions in Few-Mode Fiber Transmission. Journal of<br>Lightwave Technology, 2019, 37, 1273-1279.                                           | 4.6 | 19        |
| 46 | Master-slave carrier recovery for M-QAM multicore fiber transmission. Optics Express, 2019, 27, 22226.                                                                                      | 3.4 | 8         |
| 47 | Inter-Core Crosstalk Impact of Classical Channels on CV-QKD in Multicore Fiber Transmission. , 2019, , .                                                                                    |     | 7         |
| 48 | 0.715 Pb/s Transmission over 2,009.6 km in 19-core cladding pumped EDFA amplified MCF link. , 2019, , .                                                                                     |     | 20        |
| 49 | Wide-Band Intermodal Wavelength Conversion in a Dispersion Engineered Highly Nonlinear FMF. , 2019, , .                                                                                     |     | 6         |
| 50 | Impact of Modulation Format on Dynamic Channel Crosstalk Behavior in Multi-Core Fibers. , 2019, , .                                                                                         |     | 2         |
| 51 | Challenges in Parallel Operation of Quantum Key Distribution and Data Transmission. , 2019, , .                                                                                             |     | 1         |
| 52 | Long-Haul Transmission Over Few-Mode Fibers With Space-Division Multiplexing. Journal of Lightwave<br>Technology, 2018, 36, 1382-1388.                                                      | 4.6 | 80        |
| 53 | Record Spectral Efficient Transmission of 11.24 Bit/s/Hz/mode over 30 km Few-Mode Fiber. , 2018, , .                                                                                        |     | 0         |
|    |                                                                                                                                                                                             |     |           |

54 Impact of Intercore Crosstalk on Achievable Information Rates. , 2018, , .

4

| #  | Article                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Free-Space Few-Mode Kramers-Kronig Receiver. , 2018, , .                                                                                                    |     | 0         |
| 56 | Joint Phase Tracking for Multicore Transmission with Correlated Phase Noise. , 2018, , .                                                                    |     | 1         |
| 57 | Inter-Core Crosstalk Penalties in Wideband WDM, MCF Transmission Over Transoceanic Distances. , 2018, , .                                                   |     | 7         |
| 58 | Experimental Investigation of Intermodal Nonlinear Signal Degradation in a Few-Mode Fiber Transmission System. , 2018, , .                                  |     | 1         |
| 59 | Demonstration of an SDM Network Testbed for Joint Spatial Circuit and Packet Switching â€.<br>Photonics, 2018, 5, 20.                                       | 2.0 | 5         |
| 60 | Long distance crosstalk-supported transmission using homogeneous multicore fibers and SDM-MIMO demultiplexing. Optics Express, 2018, 26, 24044.             | 3.4 | 17        |
| 61 | Investigation of Higher Order Modulation Formats for Few-Mode Fiber SDM Transmission Systems. , 2018, , .                                                   |     | 4         |
| 62 | Investigation of Intermodal Four-Wave Mixing for Nonlinear Signal Processing in Few-Mode Fibers.<br>IEEE Photonics Technology Letters, 2018, 30, 1527-1530. | 2.5 | 25        |
| 63 | 159 Tbit/s C+L Band Transmission over 1045 km 3-Mode Graded-Index Few-Mode Fiber. , 2018, , .                                                               |     | 32        |
| 64 | 93.34 Tbit/s/mode (280 Tbit/s) Transmission in a 3-Mode Graded-Index Few-Mode Fiber. , 2018, , .                                                            |     | 24        |
| 65 | Impact of differential group-velocity dispersion on intermodal four-wave mixing in few-mode fibers. ,<br>2018, , .                                          |     | 2         |
| 66 | High-capacity transmission with homogeneous multi-core fibers and wideband optical comb sources. , 2018, , .                                                |     | 0         |
| 67 | Spectral efficiency in crosstalk-impaired multi-core fiber links. , 2018, , .                                                                               |     | 0         |
| 68 | High Capacity Transmission Systems Using Homogeneous Multi-Core Fibers. Journal of Lightwave<br>Technology, 2017, 35, 1157-1167.                            | 4.6 | 61        |
| 69 | Advanced Space Division Multiplexing Technologies for Optical Networks. Journal of Optical Communications and Networking, 2017, 9, C1.                      | 4.8 | 69        |
| 70 | Impact of GVD on Polarization-Insensitive Self-Homodyne Detection Receiver. IEEE Photonics<br>Technology Letters, 2017, 29, 631-634.                        | 2.5 | 4         |
| 71 | High-capacity transmission over multi-core fibers. Optical Fiber Technology, 2017, 35, 100-107.                                                             | 2.7 | 37        |
|    |                                                                                                                                                             |     |           |

DD-OFDM multicore fiber systems impaired by intercore crosstalk and laser phase noise. , 2017, , .

| #  | Article                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Spectrally-Efficient Seed-Lightwave-Distribution System using Space-Division-Multiplexed Distribution Channel for Multi-core 3-Mode-Multiplexed DP-64QAM Transmission. , 2017, , . |     | 5         |
| 74 | 3500-km Mode-Multiplexed Transmission Through a Three-Mode Graded-Index Few-Mode Fiber Link. , 2017, , .                                                                           |     | 14        |
| 75 | Performance Fluctuations in Direct Detection Multi-Core Fiber Transmission Systems. , 2017, , .                                                                                    |     | 3         |
| 76 | On the Use of High-Order MIMO for Long-Distance Homogeneous Single-Mode Multicore Fiber<br>Transmission. , 2017, , .                                                               |     | 9         |
| 77 | Hybrid Circuit and Packet Switching SDM Network Testbed Using Joint Spatial Switching and Multi-Core Fibers. , 2017, , .                                                           |     | 5         |
| 78 | Crosstalk dynamics in multi-core fibers. Optics Express, 2017, 25, 12020.                                                                                                          | 3.4 | 79        |
| 79 | Intercore crosstalk in direct-detection homogeneous multicore fiber systems impaired by laser phase noise. Optics Express, 2017, 25, 29417.                                        | 3.4 | 18        |
| 80 | Performance of adaptive DD-OFDM multicore fiber links and its relation with intercore crosstalk.<br>Optics Express, 2017, 25, 16017.                                               | 3.4 | 17        |
| 81 | Impact of GVD on polarization-insensitive self-homodyne detection receiver. , 2017, , .                                                                                            |     | Ο         |
| 82 | Modulation format-dependence of crosstalk fluctuations in homogeneous multi-core fibers. , 2017, , .                                                                               |     | 3         |
| 83 | Hybrid optical packet and circuit switching in spatial division multiplexing fiber networks. , 2017, , .                                                                           |     | 2         |
| 84 | Crosstalk Fluctuations in Homogeneous Multi-Core Fibers. , 2017, , .                                                                                                               |     | 5         |
| 85 | Parallel transmission loops for MCF system investigations. , 2017, , .                                                                                                             |     | 0         |
| 86 | Impact of Crosstalk-Power and -Polarization Variations on Short-Haul Multi-Core Fiber Transmission Systems. , 2017, , .                                                            |     | 1         |
| 87 | High-Capacity Transmission in Multi-core Fiber Systems Using Advanced Modulation Formats. , 2016, , .                                                                              |     | 0         |
| 88 | Dispersion Impact on the Crosstalk Amplitude Response of Homogeneous Multi-Core Fibers. IEEE<br>Photonics Technology Letters, 2016, 28, 1858-1861.                                 | 2.5 | 36        |
| 89 | Homogeneous, single-mode MCF transmission. , 2016, , .                                                                                                                             |     | 0         |
|    |                                                                                                                                                                                    |     |           |

90 Space division multiplexing (SDM) transmission and related technologies. , 2016, , .

| #   | Article                                                                                                                                                                         | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Self-homodyne and phase measurements for MCF transmission with wideband comb transmitter. , 2016, , .                                                                           |     | 2         |
| 92  | Record achievements in SDM transmission capacity. , 2016, , .                                                                                                                   |     | 0         |
| 93  | Time and Modulation Frequency Dependence of Crosstalk in Homogeneous Multi-Core Fibers. Journal of Lightwave Technology, 2016, 34, 441-447.                                     | 4.6 | 90        |
| 94  | Experimental Investigation of Phase-Sensitive Amplification in Quantum-Dot Semiconductor Optical Amplifier. , 2016, , .                                                         |     | 1         |
| 95  | Long Distance Transmission in a Multi-Core Fiber with Self-Homodyne Detection. , 2015, , .                                                                                      |     | 11        |
| 96  | Impact of spatial channel skew on the performance of spatial-division multiplexed self-homodyne transmission systems. , 2015, , .                                               |     | 10        |
| 97  | Experimental demonstration of a polarization-insensitive self-homodyne detection receiver for optical access. , 2015, , .                                                       |     | 10        |
| 98  | All-Optical Packet Alignment Using Polarization Attraction Effect. IEEE Photonics Technology Letters, 2015, 27, 541-544.                                                        | 2.5 | 13        |
| 99  | Self-homodyne AWG-based coherent optical packet switching architecture for data centers. , 2015, , .                                                                            |     | 0         |
| 100 | Experimental assessment of the time-varying impact of multi-core fiber crosstalk on a SSB-OFDM signal. , 2015, , .                                                              |     | 2         |
| 101 | Experimental Evaluation of the Time and Frequency Crosstalk Dependency in a 7-Core Multi-Core Fiber. , 2015, , .                                                                |     | 5         |
| 102 | Large-scale, heterogeneous, few-mode multi-core fiber technologies with over 100 spatial channels. , 2015, , .                                                                  |     | 3         |
| 103 | Investigation of PPLN-Based PSAs for High-Gain Optical Amplification. Journal of Lightwave Technology, 2015, 33, 2802-2810.                                                     | 4.6 | 4         |
| 104 | Self-Homodyne Detection-Based Fully Coherent Reflective PON Using RSOA and Simplified DSP. IEEE<br>Photonics Technology Letters, 2015, 27, 2226-2229.                           | 2.5 | 16        |
| 105 | PPLN-based all-optical signal processing and phase-sensitive amplification. , 2015, , .                                                                                         |     | 0         |
| 106 | Digital Self-Homodyne Detection. IEEE Photonics Technology Letters, 2015, 27, 608-611.                                                                                          | 2.5 | 12        |
| 107 | Single parity check-coded 16QAM over spatial superchannels in multicore fiber transmission. Optics Express, 2015, 23, 14569.                                                    | 3.4 | 13        |
| 108 | Spectrally Efficient Enhanced-Performance Bidirectional Coherent PON With Laserless 10  Gb/s ONU<br>[Invited]. Journal of Optical Communications and Networking, 2015, 7, A403. | 4.8 | 5         |

| #   | Article                                                                                                                                             | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Experimental investigation of phase-sensitive amplification of data signals in a four-mode fiber-based<br>PSA. Optics Letters, 2015, 40, 288.       | 3.3 | 4         |
| 110 | Comparing Inter-Core Skew Fluctuations in Multi-Core and Single-Core Fibers. , 2015, , .                                                            |     | 20        |
| 111 | Coherent detection in self-homodyne systems with single and multi-core transmission. , 2015, , .                                                    |     | 1         |
| 112 | OSNR penalties for non-zero skew in space-division multiplexed transmission link with self-homodyne detection. , 2015, , .                          |     | 0         |
| 113 | Self-Homodyne Detection in Optical Communication Systems. Photonics, 2014, 1, 110-130.                                                              | 2.0 | 46        |
| 114 | Self-homodyne coherent detection in multi-core fiber links. , 2014, , .                                                                             |     | 1         |
| 115 | High-capacity self-homodyne PDM-WDM-SDM transmission in a 19-core fiber. Optics Express, 2014, 22, 21185.                                           | 3.4 | 45        |
| 116 | Demonstration of Wavelength-Shared Coherent PON Using RSOA and Simplified DSP. IEEE Photonics Technology Letters, 2014, 26, 2142-2145.              | 2.5 | 8         |
| 117 | Space division multiplexing (SDM) transmission and related technologies. , 2014, , .                                                                |     | 4         |
| 118 | Modulation formats for multi-core fiber transmission. Optics Express, 2014, 22, 32457.                                                              | 3.4 | 44        |
| 119 | Investigation of PPSLT waveguides for applications in optical communication systems. , 2014, , .                                                    |     | Ο         |
| 120 | Numerical Comparison of WDM Interchannel Crosstalk in FOPA- and PPLN-Based PSAs. IEEE Photonics<br>Technology Letters, 2014, 26, 1503-1506.         | 2.5 | 8         |
| 121 | Optical technologies for space division multiplexing. , 2014, , .                                                                                   |     | 2         |
| 122 | Progress of space division multiplexing technology for future optical networks. , 2014, , .                                                         |     | 3         |
| 123 | OSNR Penalty of Self-Homodyne Coherent Detection in Spatial-Division-Multiplexing Systems. IEEE<br>Photonics Technology Letters, 2014, 26, 477-479. | 2.5 | 64        |
| 124 | Ultra High Capacity Self-Homodyne PON With Simplified ONU and Burst-Mode Upstream. IEEE Photonics<br>Technology Letters, 2014, 26, 686-689.         | 2.5 | 28        |
| 125 | 19-core MCF transmission system using EDFA with shared core pumping coupled via free-space optics.<br>Optics Express, 2014, 22, 90.                 | 3.4 | 226       |
| 126 | <italic>K</italic> -Over- <italic>L</italic> Multidimensional Position Modulation.<br>Journal of Lightwave Technology, 2014, 32, 2254-2262.         | 4.6 | 21        |

| #   | Article                                                                                                                                              | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Free-space coupling conditions for multi-core few-mode fibers. , 2014, , .                                                                           |     | 7         |
| 128 | 305 Tb/s Space Division Multiplexed Transmission Using Homogeneous 19-Core Fiber. Journal of Lightwave Technology, 2013, 31, 554-562.                | 4.6 | 196       |
| 129 | Self-homodyne coherent OFDM packet transmission without carrier frequency or common phase error estimation. , 2013, , .                              |     | 2         |
| 130 | SDM-WDM hybrid reconfigurable add-drop nodes for self-homodyne photonic networks. , 2013, , .                                                        |     | 8         |
| 131 | 210Tb/s self-homodyne PDM-WDM-SDM transmission with DFB lasers in a 19-core fiber. , 2013, , .                                                       |     | 6         |
| 132 | Investigating self-homodyne coherent detection in a 19 channel space-division-multiplexed transmission link. Optics Express, 2013, 21, 1561.         | 3.4 | 89        |
| 133 | Phase-sensitive amplification in a single bi-directional PPLN waveguide. Optics Express, 2013, 21, 22063.                                            | 3.4 | 4         |
| 134 | Performance evaluation of a burst-mode EDFA in an optical packet and circuit integrated network.<br>Optics Express, 2013, 21, 32589.                 | 3.4 | 24        |
| 135 | Modelling all-optical phase-sensitive BPSK and QPSK regenerators. , 2013, , .                                                                        |     | 1         |
| 136 | PPLN-based all-optical QPSK regenerator. , 2013, , .                                                                                                 |     | 1         |
| 137 | 105Tb/s Transmission System Using Low-cost, MHz Linewidth DFB Lasers Enabled by Self-Homodyne<br>Coherent Detection and a 19-Core Fiber. , 2013, , . |     | 3         |
| 138 | Investigation of black-box phase regeneration using single bi-directional PPLN waveguide. , 2013, , .                                                |     | 2         |
| 139 | Investigation of Receiver DSP Carrier Phase Estimation Rate for Self-homodyne Space-division<br>Multiplexing Communication Systems. , 2013, , .      |     | 14        |
| 140 | Large-capacity transmission over a 19-core fiber. , 2013, , .                                                                                        |     | 3         |
| 141 | Fast Equalizer Kernel Initialization for Coherent PDM-QPSK Burst-mode Receivers Based on Stokes<br>Estimator. , 2013, , .                            |     | 5         |
| 142 | 19-core fiber transmission of 19×100×172-Gb/s SDM-WDM-PDM-QPSK signals at 305Tb/s. , 2012, , .                                                       |     | 35        |
| 143 | Transmission of PM-QPSK and PS-QPSK with different fiber span lengths. Optics Express, 2012, 20, 7544.                                               | 3.4 | 11        |
| 144 | Signal-signal crosstalk measurements in a PPLN-PPLN PSA with narrow channel spacing. , 2012, , .                                                     |     | 2         |

| #   | Article                                                                                                                                                             | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Investigation of an All-Optical Black-Box PPLN-PPLN BPSK Phase Regenerator. IEEE Photonics<br>Technology Letters, 2012, 24, 2087-2089.                              | 2.5 | 10        |
| 146 | Free-Space Coupling Optics for Multicore Fibers. IEEE Photonics Technology Letters, 2012, 24, 1902-1905.                                                            | 2.5 | 83        |
| 147 | Free-space coupling optics for multi-core fibers. , 2012, , .                                                                                                       |     | 8         |
| 148 | 19-core fiber transmission of 19×100×172-Gb/s SDM-WDM-PDM-QPSK signals at 305Tb/s. , 2012, , .                                                                      |     | 64        |
| 149 | Multi-channel phase squeezing in a PPLN-PPLN PSA. , 2012, , .                                                                                                       |     | 6         |
| 150 | Large-scale space division multiplexed transmission through multi-core fiber. , 2012, , .                                                                           |     | 1         |
| 151 | Large Phase Sensitive Gain in Periodically Poled Lithium–Niobate With High Pump Power. IEEE<br>Photonics Technology Letters, 2011, 23, 426-428.                     | 2.5 | 18        |
| 152 | Phase-squeezing properties of non-degenerate PSAs using PPLN waveguides. Optics Express, 2011, 19,<br>B131.                                                         | 3.4 | 42        |
| 153 | Evaluation of a Fiber-Optic Parametric Amplifier with Optical Feedback in Multi-Channel Dynamic Networks. , 2011, , .                                               |     | 2         |
| 154 | Experimental Investigation of Phase Squeezing in a Non-Degenerate PSA Based on a PPLN Waveguide. ,<br>2011, , .                                                     |     | 1         |
| 155 | Burst-Mode Optical Amplifier. , 2010, , .                                                                                                                           |     | 6         |
| 156 | Investigating the Limits of Optical Packet Transmission Through Cascaded Transient-Suppressed EDFAs<br>Without Regeneration or Active Gain Control. , 2010, , .     |     | 9         |
| 157 | Experimental characterization of the phase squeezing properties of a phase-sensitive parametric amplifier in non-degenerate idler configuration. , 2010, , .        |     | 8         |
| 158 | Eliminating gain transience in RoF signals in dynamic WDM networks using a transient-suppressed-EDFA with additional gain-stabilization. , 2010, , .                |     | 2         |
| 159 | Optimization of Wavelength-Locking Loops for Fast Tunable Laser Stabilization in Dynamic Optical<br>Networks. Journal of Lightwave Technology, 2009, 27, 2117-2124. | 4.6 | 15        |
| 160 | Supplementary transient suppression in a Burst-mode EDFA using optical feedback. , 2009, , .                                                                        |     | 1         |
| 161 | Performance of an Adaptive Threshold Receiver in a Dynamic Optical Burst-Switched Network. IEEE<br>Photonics Technology Letters, 2008, 20, 223-225.                 | 2.5 | 3         |
| 162 | Experimental investigation of optically gain-clamped EDFAs in dynamic optical- burst-switched networks. Journal of Optical Networking, 2008, 7, 151.                | 2.5 | 6         |

| #   | Article                                                                                                                                                               | lF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Experimental investigation of optically gain-clamped EDFAs in dynamic optical-burst-switched networks: publisher's note. Journal of Optical Networking, 2008, 7, 197. | 2.5 | 3         |
| 164 | 10 Gb/s AC-Coupled Digital Burst-Mode Optical Receiver. , 2007, , .                                                                                                   |     | 3         |
| 165 | Optically equalized 10 Gb/s NRZ digital burstmode receiver for dynamic optical networks. Optics Express, 2007, 15, 9520.                                              | 3.4 | 10        |