
Cong-Xia Xie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2973986/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A novel green catalytic strategy for hydration of α-pinene by a natural deep eutectic solvent. Biomass Conversion and Biorefinery, 2022, 12, 2267-2275.	4.6	5
2	Photoregulative phase change biomaterials showing thermodynamic and mchanical stabilities. Nanoscale, 2022, 14, 976-983.	5.6	9
3	A porous organic polymer supported Pd/Cu bimetallic catalyst for heterogeneous oxidation of alkynes to 1,2-diketones. Catalysis Science and Technology, 2022, 12, 722-727.	4.1	5
4	Disordered Low Molecular Weight Spiropyran Exhibiting Photoregulated Adhesion Ability. Chemistry - A European Journal, 2022, 28, .	3.3	7
5	Coupling of Nâ€Doped Mesoporous Carbon and Nâ€Ti ₃ C ₂ in 2D Sandwiched Heterostructure for Enhanced Oxygen Electroreduction. Small, 2022, 18, e2106581.	10.0	14
6	A heterogeneous Rh/CPOL-BINAPa&PPh ₃ catalyst for hydroformylation of olefins: chemical and DFT insights into active species and the roles of BINAPa and PPh ₃ . Catalysis Science and Technology, 2022, 12, 3440-3446.	4.1	6
7	Efficient Synthesis of (R)-(+)-Perillyl Alcohol From (R)-(+)-Limonene Using Engineered Escherichia coli Whole Cell Biocatalyst. Frontiers in Bioengineering and Biotechnology, 2022, 10, 900800.	4.1	2
8	Biomimetic Robust Starch Composite Films with Super-Hydrophobicity and Vivid Structural Colors. International Journal of Molecular Sciences, 2022, 23, 5607.	4.1	2
9	Aqueous-phase hydrogenation of \hat{I}_{\pm} -pinene catalyzed by Ni-B alloys loaded on a Janus amphiphilic carbon@silica nanomaterial. Industrial Crops and Products, 2022, 185, 115140.	5.2	5
10	Fluorescent solvent-free lignin ionic complexes with thermostability toward a luminescent hydrophobic coating material. Materials Chemistry Frontiers, 2022, 6, 2122-2127.	5.9	2
11	Tailoring effects of the chain length and terminal substituent on the photochromism of solid-state spiropyrans. Organic and Biomolecular Chemistry, 2021, 19, 8722-8726.	2.8	6
12	Effectiveness of recombinant Escherichia coli on the production of (R)-(+)-perillyl alcohol. BMC Biotechnology, 2021, 21, 3.	3.3	6
13	Oxidation of 1-propanol to propionic acid with hydrogen peroxide catalysed by heteropolyoxometalates. BMC Chemistry, 2021, 15, 23.	3.8	3
14	Molecular design of long intraâ€annular nitrogen chains: 3Hâ€ŧetrazolo[1,5â€d]tetrazoleâ€based highâ€energyâ€density materials. International Journal of Quantum Chemistry, 2021, 121, e26743.	2.0	3
15	Bimetal Oxide Catalysts Selectively Catalyze Cellulose to Ethylene Glycol. Journal of Physical Chemistry C, 2021, 125, 18170-18179.	3.1	9
16	Access to α,β-unsaturated carboxylic acids through water-soluble palladium catalyzed hydroxycarbonylation of alkynes using water as the solvent. Catalysis Science and Technology, 2021, 11, 4708-4713.	4.1	5
17	Solid-state spiropyrans exhibiting photochromic properties based on molecular flexibility. Materials Chemistry Frontiers, 2021, 5, 3119-3124.	5.9	35
18	Co-Production of Isoprene and Lactate by Engineered Escherichia coli in Microaerobic Conditions. Molecules, 2021, 26, 7173.	3.8	2

#	Article	IF	CITATIONS
19	Selective Hydrogenation of Phenol to Cyclohexanone over a Highly Stable Core-Shell Catalyst with Pd-Lewis Acid Sites. Journal of Physical Chemistry C, 2021, 125, 27241-27251.	3.1	12
20	Baeyer-Villiger Oxidation of Cyclic Ketones Catalyzed by Amino Acid Ionic Liquids. Chemical Research in Chinese Universities, 2020, 36, 865-869.	2.6	4
21	Selective mercury(<scp>ii</scp>) detection in aqueous solutions upon the absorption changes corresponding to the transition moments polarized along the short axis of an azobenzene chemosensor. Analyst, The, 2020, 145, 1641-1645.	3.5	13
22	Improved cis-Abienol production through increasing precursor supply in Escherichia coli. Scientific Reports, 2020, 10, 16791.	3.3	13
23	One-Pot Synthesis of Stable Pd@mSiO2 Core–Shell Nanospheres and Their Application to the Hydrogenation of Levulinic Acid. Catalysis Letters, 2020, 150, 3437-3446.	2.6	10
24	Hydrogenation of α-Pinene over Platinum Nanoparticles Reduced and Stabilized by Sodium Lignosulfonate. ACS Omega, 2020, 5, 8902-8911.	3.5	12
25	pHâ€sensitive hydrogel based on carboxymethyl chitosan/sodium alginate and its application for drug delivery. Journal of Applied Polymer Science, 2019, 136, 46911.	2.6	36
26	Synthesis of Ru nanoparticles with hydroxyethyl cellulose as stabilizer for high-efficiency reduction of α-pinene. Cellulose, 2019, 26, 8059-8071.	4.9	3
27	Highly selective and recyclable hydrogenation of αâ€pinene catalyzed by ruthenium nanoparticles loaded on amphiphilic core–shell magnetic nanomaterials. Applied Organometallic Chemistry, 2019, 33, e5165.	3.5	2
28	Oneâ€Pot Synthesis of Spiropyrans. Asian Journal of Organic Chemistry, 2019, 8, 1866-1869.	2.7	9
29	Synthesis of Rosin Methyl Ester Using PTSA/ZrO2/Mo-MCM-41 Mesoporous Molecular Sieves. Catalysis Letters, 2019, 149, 1911-1918.	2.6	5
30	One-pot synthesis of stable Pd@mSiO ₂ core–shell nanospheres with controlled pore structure and their application to the hydrogenation reaction. Dalton Transactions, 2019, 48, 7015-7024.	3.3	23
31	PVAâ€encapsulated Palladium Nanoparticles: Ecoâ€friendly and Highly Selective Catalyst for Hydrogenation of Nitrobenzene in Aqueous Medium. Chemistry - an Asian Journal, 2019, 14, 2266-2272.	3.3	17
32	Porous Organic Polymer Supported Rhodium as a Reusable Heterogeneous Catalyst for Hydroformylation of Olefins. Organic Letters, 2019, 21, 2147-2150.	4.6	42
33	Alkylation of isobutane and isobutene catalyzed by trifluoromethanesulfonic acid-taurine deep eutectic solvents in polyethylene glycol. Chemical Communications, 2019, 55, 4833-4836.	4.1	14
34	Mild Hydrogenation of αâ€Pinene Catalyzed by Ru Nanoparticles Loaded on Boronâ€doped Amphiphilic Coreâ€6hell Mesoporous Molecular Sieves. ChemCatChem, 2019, 11, 1518-1525.	3.7	12
35	Synthesis of a highly active aminoâ€functionalized Fe ₃ O ₄ @SiO ₂ /APTS/Ru magnetic nanocomposite catalyst for hydrogenation reactions. Applied Organometallic Chemistry, 2019, 33, e4686.	3.5	12
36	Porous organic polymer supported rhodium as a heterogeneous catalyst for hydroformylation of alkynes to α,β-unsaturated aldehydes. Chemical Communications, 2019, 55, 13721-13724.	4.1	31

#	Article	IF	CITATIONS
37	Production of dissolving pulp from Eulaliopsis binata with the concept of integrated biorefinery. Cellulose, 2019, 26, 2087-2097.	4.9	6
38	Ni-doped mesoporous carbon obtained from hydrothermal carbonization of cellulose and their catalytic hydrogenation activity study. Journal of Materials Science, 2018, 53, 7900-7910.	3.7	19
39	Preparation of alkylate gasoline in polyether-based acidic ionic liquids. Catalysis Today, 2018, 310, 141-145.	4.4	9
40	Water-soluble palladium nanoparticles as an active catalyst for highly selective hydrogenation of nitrobenzene to aniline. Research on Chemical Intermediates, 2018, 44, 13-26.	2.7	7
41	Highly selective hydrogenation of α-pinene in aqueous medium using PVA-stabilized Ru nanoparticles. Molecular Catalysis, 2018, 444, 62-69.	2.0	23
42	Preparation and characterization of petroleum-based mesophase pitch by thermal condensation with in-process hydrogenation. RSC Advances, 2018, 8, 30230-30238.	3.6	18
43	Formation and Extractive Desulfurization Mechanisms of Aromatic Acid Based Deep Eutectic Solvents: An Experimental and Theoretical Study. Chemistry - A European Journal, 2018, 24, 11021-11032.	3.3	59
44	Hydrogenation of Rosin to Hydrogenated Rosin by Ru/Fe3O4@C Magnetic Catalyst. Catalysis Letters, 2018, 148, 3147-3157.	2.6	6
45	Benzylation with Benzyl Alcohol Catalyzed By [ChCl][TfOH]2, a BrÃ,nsted Acidic DES with Reaction Control Self-Separation Performance. Catalysis Letters, 2018, 148, 2133-2138.	2.6	6
46	Enzymatic process optimization for the in vitro production of isoprene from mevalonate. Microbial Cell Factories, 2017, 16, 8.	4.0	17
47	Hydrogenation of 2-Ethylhexenal Using Supported-Metal Catalysts for Production of 2-Ethylhexanol. Catalysis Letters, 2017, 147, 987-995.	2.6	3
48	Preparation of cis-pinane via α-pinene hydrogenation in water by using Ru nanoparticles immobilized in functionalized amphiphilic mesoporous silica. RSC Advances, 2017, 7, 51452-51459.	3.6	17
49	The selective hydrogenation of rosin to hydroabietic content using Pd/SBA-15 as catalysts. Research on Chemical Intermediates, 2017, 43, 1211-1221.	2.7	4
50	A novel Brönsted–Lewis acidic heteropoly organic–inorganic salt: preparation and catalysis for rosin dimerization. SpringerPlus, 2016, 5, 460.	1.2	5
51	Synthesis of silanized magnetic Ru/Fe3O4@SiO2 nanospheres and their high selectivity to prepare cis-pinane. RSC Advances, 2016, 6, 81310-81317.	3.6	5
52	Magnetically recyclable Ru immobilized on amine-functionalized magnetite nanoparticles and its high selectivity to prepare cis -pinane. Journal of Molecular Catalysis A, 2016, 424, 269-275.	4.8	14
53	Selective hydrogenation of α-pinene to cis-pinane over Ru nanocatalysts in aqueous micellar nanoreactors. RSC Advances, 2016, 6, 54806-54811.	3.6	20
54	Hydrogenation of rosin over PVP-stabilized Pd nanoparticles in aqueous/organic biphasic system. Research on Chemical Intermediates, 2016, 42, 6181-6190.	2.7	5

#	Article	IF	CITATIONS
55	Heteropolyacid Bisalt of N-octyl Ethoxylated Octadecylamine: An Efficient and Reusable Catalyst for Carboxylic Acid-Free Hydration of α-Pinene. Catalysis Letters, 2016, 146, 929-936.	2.6	9
56	Highly Selective Hydrogenation of α-Pinene Catalyzed by Ru Nanoparticles in Aqueous Micellar Microreactors. Catalysis Letters, 2016, 146, 580-586.	2.6	20
57	Facile preparation for robust and freestanding silk fibroin films in a 1â€butylâ€3â€methyl imidazolium acetate ionic liquid system. Journal of Applied Polymer Science, 2015, 132, .	2.6	12
58	Design of a thermoregulated phase-separable system for homogeneous enzymolysis of cellulose. Green Chemistry, 2015, 17, 3067-3074.	9.0	4
59	Alkylation of isobutane/isobutene using BrĄ̃,nsted–Lewis acidic ionic liquids as catalysts. Fuel, 2015, 159, 803-809.	6.4	55
60	Oxidative-extractive deep desulfurization of gasoline by functionalized heteropoly acid catalysts. RSC Advances, 2015, 5, 85540-85546.	3.6	11
61	Mild water-promoted ruthenium nanoparticles as an efficient catalyst for the preparation of cis-rich pinane. RSC Advances, 2015, 5, 89552-89558.	3.6	34
62	Synthesis of Glycerol Triacetate Using a BrÃ,nsted–Lewis Acidic Ionic Liquid as the Catalyst. JAOCS, Journal of the American Oil Chemists' Society, 2015, 92, 1253-1258.	1.9	6
63	Hydration of α-pinene homogenous catalyzed by acidic polyether-modified ammonium salt ionic liquid in "microreactor― Research on Chemical Intermediates, 2015, 41, 2407-2414.	2.7	6
64	Preparation of oligochitosan via <i>In situ</i> enzymatic hydrolysis of chitosan by amylase in [Gly]BF ₄ ionic liquid/water homogeneous system. Journal of Applied Polymer Science, 2014, 131, .	2.6	5
65	Application of Dissociation Extraction in Oxidation Degradation Reaction of Lignin. Industrial & Engineering Chemistry Research, 2014, 53, 19370-19374.	3.7	11
66	Synthesis and property of imidazolium oxidative-thermoregulated ionic liquids. Science Bulletin, 2014, 59, 4705-4711.	1.7	3
67	Study on Enzymatic Degradation of Cornstalk in Ionic Liquid. Catalysis Letters, 2014, 144, 229-234.	2.6	4
68	Synthesis of terpinyl acetate using octadecylamine ethoxylate ionic liquids as catalysts. Research on Chemical Intermediates, 2013, 39, 2095-2105.	2.7	11
69	Mesoporous molecular sieves K2O/Ba(Ca or Mg)-MCM-41 with base sites as heterogeneous catalysts for the production of liquid hydrocarbon fuel from catalytic cracking of rubber seed oil. Green Chemistry, 2013, 15, 2573.	9.0	17
70	Isooctanol alcoholysis of waste polyethylene terephthalate in acidic ionic liquid. Journal of Polymer Research, 2013, 20, 1.	2.4	11
71	Imidazolium chiral ionic liquid derived carbene-catalyzed conjugate umpolung for synthesis of Î ³ -butyrolactones. RSC Advances, 2013, 3, 3996.	3.6	13
72	Process of lignin oxidation in an ionic liquid coupled with separation. RSC Advances, 2013, 3, 5789.	3.6	56

#	Article	IF	CITATIONS
73	N-terminal PEGylated cellulase: a high stability enzyme in 1-butyl-3-methylimidazolium chloride. Green Chemistry, 2013, 15, 1624.	9.0	19
74	Butanol alcoholysis reaction of polyethylene terephthalate using acidic ionic liquid as catalyst. Journal of Applied Polymer Science, 2013, 130, 1840-1844.	2.6	21
75	<i>N</i> â€acyl chitosan and its fiber with excellent moisture absorbability and retentivity: Preparation in a novel [Gly]Cl/water homogeneous system. Journal of Applied Polymer Science, 2013, 129, 3282-3289.	2.6	5
76	Novel compatible system of [C2OHmim][OAc]-cellulases for the in situ hydrolysis of lignocellulosic biomass. RSC Advances, 2012, 2, 11712.	3.6	14
77	Preparation of high strength chitosan fibers by using ionic liquid as spinning solution. Journal of Materials Chemistry, 2012, 22, 8585.	6.7	55
78	Clean Preparation Process of Chitosan Oligomers in Gly Series Ionic Liquids Homogeneous System. Journal of Polymers and the Environment, 2012, 20, 388-394.	5.0	8
79	Glycine hydrochloride ionic liquid/aqueous solution system as a platform for the utilization of chitosan. Journal of Applied Polymer Science, 2012, 123, 3772-3780.	2.6	8
80	Synthesis of Nipagin Esters Using Acidic Functional Ionic Liquids as Catalysts. Synthetic Communications, 2011, 41, 945-952.	2.1	2
81	Hydrogenation of α-Pinene over Ruthenium Chloride Promoted by Water. Chinese Journal of Catalysis, 2011, 32, 643-646.	14.0	13
82	Polyether-substituted thiazolium ionic liquid catalysts – a thermoregulated phase-separable catalysis system for the Stetter reaction. Green Chemistry, 2010, 12, 1196.	9.0	28
83	Synthesis of glycerol triacetate using functionalized ionic liquid as catalyst. Journal of Chemical Technology and Biotechnology, 2009, 84, 1649-1652.	3.2	30
84	Methanolysis and Hydrolysis of Polycarbonate Under Moderate Conditions. Journal of Polymers and the Environment, 2009, 17, 208-211.	5.0	71
85	Synthesis of plasticizer ester using acid-functionalized ionic liquid as catalyst. Journal of Hazardous Materials, 2008, 151, 847-850.	12.4	53