## Michael S Vitevitch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2973894/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Probabilistic Phonotactics and Neighborhood Activation in Spoken Word Recognition. Journal of<br>Memory and Language, 1999, 40, 374-408.                                                                   | 1.1 | 579       |
| 2  | When Words Compete: Levels of Processing in Perception of Spoken Words. Psychological Science, 1998, 9, 325-329.                                                                                           | 1.8 | 491       |
| 3  | A Web-based interface to calculate phonotactic probability for words and nonwords in English.<br>Behavior Research Methods, 2004, 36, 481-487.                                                             | 1.3 | 361       |
| 4  | Phonotactics and Syllable Stress: Implications for the Processing of Spoken Nonsense Words.<br>Language and Speech, 1997, 40, 47-62.                                                                       | 0.6 | 248       |
| 5  | Phonotactics, Neighborhood Activation, and Lexical Access for Spoken Words. Brain and Language, 1999, 68, 306-311.                                                                                         | 0.8 | 202       |
| 6  | Phonetic priming, neighborhood activation, and PARSYN. Perception & Psychophysics, 2000, 62, 615-625.                                                                                                      | 2.3 | 199       |
| 7  | The influence of phonological similarity neighborhoods on speech production Journal of Experimental Psychology: Learning Memory and Cognition, 2002, 28, 735-747.                                          | 0.7 | 193       |
| 8  | The facilitative influence of phonological similarity and neighborhood frequency in speech production in younger and older adults. Memory and Cognition, 2003, 31, 491-504.                                | 0.9 | 187       |
| 9  | What Can Graph Theory Tell Us About Word Learning and Lexical Retrieval?. Journal of Speech,<br>Language, and Hearing Research, 2008, 51, 408-422.                                                         | 0.7 | 180       |
| 10 | The influence of phonological similarity neighborhoods on speech production. Journal of Experimental Psychology: Learning Memory and Cognition, 2002, 28, 735-47.                                          | 0.7 | 156       |
| 11 | The Neighborhood Characteristics of Malapropisms. Language and Speech, 1997, 40, 211-228.                                                                                                                  | 0.6 | 128       |
| 12 | Increases in phonotactic probability facilitate spoken nonword repetition. Journal of Memory and<br>Language, 2005, 52, 193-204.                                                                           | 1.1 | 119       |
| 13 | Sublexical and Lexical Representations in Speech Production: Effects of Phonotactic Probability and<br>Onset Density Journal of Experimental Psychology: Learning Memory and Cognition, 2004, 30, 514-529. | 0.7 | 113       |
| 14 | Phonological Neighborhood Effects in Spoken Word Perception and Production. Annual Review of Linguistics, 2016, 2, 75-94.                                                                                  | 1.2 | 113       |
| 15 | Change deafness: The inability to detect changes between two voices Journal of Experimental<br>Psychology: Human Perception and Performance, 2003, 29, 333-342.                                            | 0.7 | 108       |
| 16 | Neighborhood density effects in spoken word recognition in Spanish. Clinical Linguistics and Phonetics, 2005, 3, 64-73.                                                                                    | 0.3 | 94        |
| 17 | The curious case of competition in Spanish speech production. Language and Cognitive Processes, 2006, 21, 760-770.                                                                                         | 2.3 | 87        |
| 18 | Application of network analysis to identify interactive systems of eating disorder psychopathology.<br>Psychological Medicine, 2016, 46, 2667-2677.                                                        | 2.7 | 84        |

| #  | Article                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | The influence of the phonological neighborhood clustering coefficient on spoken word<br>recognition Journal of Experimental Psychology: Human Perception and Performance, 2009, 35,<br>1934-1949. | 0.7 | 83        |
| 20 | Network Structure Influences Speech Production. Cognitive Science, 2010, 34, 685-697.                                                                                                             | 0.8 | 81        |
| 21 | Complex network structure influences processing in long-term and short-term memory. Journal of<br>Memory and Language, 2012, 67, 30-44.                                                           | 1.1 | 80        |
| 22 | THE STRUCTURE OF PHONOLOGICAL NETWORKS ACROSS MULTIPLE LANGUAGES. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2010, 20, 679-685.                          | 0.7 | 78        |
| 23 | Influence of onset density on spoken-word recognition Journal of Experimental Psychology: Human<br>Perception and Performance, 2002, 28, 270-278.                                                 | 0.7 | 72        |
| 24 | Insights into failed lexical retrieval from network science. Cognitive Psychology, 2014, 68, 1-32.                                                                                                | 0.9 | 71        |
| 25 | Naturalistic and Experimental Analyses of Word Frequency and Neighborhood Density Effects in Slips of the Ear. Language and Speech, 2002, 45, 407-434.                                            | 0.6 | 64        |
| 26 | Using network science in the language sciences and clinic. International Journal of Speech-Language<br>Pathology, 2015, 17, 13-25.                                                                | 0.6 | 58        |
| 27 | The influence of sublexical and lexical representations on the processing of spoken words in English.<br>Clinical Linguistics and Phonetics, 2003, 17, 487-499.                                   | 0.5 | 55        |
| 28 | Influence of onset density on spoken-word recognition. Journal of Experimental Psychology: Human<br>Perception and Performance, 2002, 28, 270-8.                                                  | 0.7 | 53        |
| 29 | The influence of clustering coefficient on word-learning: how groups of similar sounding words facilitate acquisition. Frontiers in Psychology, 2014, 5, 1307.                                    | 1.1 | 49        |
| 30 | The Influence of Closeness Centrality on Lexical Processing. Frontiers in Psychology, 2017, 8, 1683.                                                                                              | 1.1 | 48        |
| 31 | Simulating Retrieval from a Highly Clustered Network: Implications for Spoken Word Recognition.<br>Frontiers in Psychology, 2011, 2, 369.                                                         | 1.1 | 46        |
| 32 | The spread of the phonological neighborhood influences spoken word recognition. Memory and Cognition, 2007, 35, 166-175.                                                                          | 0.9 | 44        |
| 33 | Comparative Analysis of Networks of Phonologically Similar Words in English and Spanish. Entropy, 2010, 12, 327-337.                                                                              | 1.1 | 39        |
| 34 | Phonological similarity influences word learning in adults learning Spanish as a foreign language.<br>Bilingualism, 2012, 15, 490-502.                                                            | 1.0 | 34        |
| 35 | Processing of Indexical Information Requires Time: Evidence from Change Deafness. Quarterly Journal of Experimental Psychology, 2011, 64, 1484-1493.                                              | 0.6 | 32        |
| 36 | Spoken word recognition and serial recall of words from components in the phonological network<br>Journal of Experimental Psychology: Learning Memory and Cognition, 2016, 42, 394-410.           | 0.7 | 28        |

| #  | Article                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | The phonographic language network: Using network science to investigate the phonological and<br>orthographic similarity structure of language Journal of Experimental Psychology: General, 2019,<br>148, 475-500. | 1.5 | 25        |
| 38 | Word Length and Lexical Competition: Longer is the Same as Shorter. Language and Speech, 2008, 51, 361-383.                                                                                                       | 0.6 | 21        |
| 39 | Examining the Acquisition of Phonological Word Forms with Computational Experiments. Language and Speech, 2013, 56, 493-527.                                                                                      | 0.6 | 21        |
| 40 | Using network science to understand statistics anxiety among college students Scholarship of Teaching and Learning in Psychology, 2019, 5, 75-89.                                                                 | 0.9 | 21        |
| 41 | What do foreign neighbors say about the mental lexicon?. Bilingualism, 2012, 15, 167-172.                                                                                                                         | 1.0 | 19        |
| 42 | Speaker Sex Influences Processing of Grammatical Gender. PLoS ONE, 2013, 8, e79701.                                                                                                                               | 1.1 | 19        |
| 43 | Keywords in the mental lexicon. Journal of Memory and Language, 2014, 73, 131-147.                                                                                                                                | 1.1 | 18        |
| 44 | The origins of Zipf's meaningâ€frequency law. Journal of the Association for Information Science and Technology, 2018, 69, 1369-1379.                                                                             | 1.5 | 18        |
| 45 | Unveiling the nature of interaction between semantics and phonology in lexical access based on multilayer networks. Scientific Reports, 2021, 11, 14479.                                                          | 1.6 | 18        |
| 46 | Using complex networks to understand the mental lexicon. Yearbook of the Poznan Linguistic<br>Meeting, 2014, 1, 119-138.                                                                                          | 0.2 | 18        |
| 47 | Using the OASES-A to illustrate how network analysis can be applied to understand the experience of stuttering. Journal of Communication Disorders, 2017, 65, 1-9.                                                | 0.8 | 17        |
| 48 | What Can Network Science Tell Us About Phonology and Language Processing?. Topics in Cognitive Science, 2022, 14, 127-142.                                                                                        | 1.1 | 17        |
| 49 | Using Network Science Measures to Predict the Lexical Decision Performance of Adults Who Stutter.<br>Journal of Speech, Language, and Hearing Research, 2017, 60, 1911-1918.                                      | 0.7 | 15        |
| 50 | Path-Length and the Misperception of Speech: Insights from Network Science and Psycholinguistics.<br>Understanding Complex Systems, 2016, , 29-45.                                                                | 0.3 | 15        |
| 51 | A Web-based interface to calculate phonotactic probability for words and nonwords in Modern<br>Standard Arabic. Behavior Research Methods, 2018, 50, 313-322.                                                     | 2.3 | 14        |
| 52 | Effects of mental resource availability on looming task performance. Attention, Perception, and Psychophysics, 2016, 78, 107-113.                                                                                 | 0.7 | 13        |
| 53 | An investigation of network growth principles in the phonological language network Journal of<br>Experimental Psychology: General, 2020, 149, 2376-2394.                                                          | 1.5 | 13        |
| 54 | Effects of Phonotactic Probabilities on the Processing of Spoken Words and Nonwords by Adults with Cochlear Implants Who Were Postlingually Deafened. Volta Review, 2000, 102, 283-302.                           | 0.6 | 12        |

| #  | Article                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | The influence of neighborhood density on the recognition of Spanish-accented words Journal of<br>Experimental Psychology: Human Perception and Performance, 2015, 41, 69-85.                                                            | 0.7 | 11        |
| 56 | The influence of known-word frequency on the acquisition of new neighbours in adults: evidence for exemplar representations in word learning. Language, Cognition and Neuroscience, 2014, 29, 1311-1316.                                | 0.7 | 10        |
| 57 | Investigating the Influence of Inverse Preferential Attachment on Network Development. Entropy, 2020, 22, 1029.                                                                                                                         | 1.1 | 10        |
| 58 | Cognitive Networks Extract Insights on COVID-19 Vaccines from English and Italian Popular Tweets:<br>Anticipation, Logistics, Conspiracy and Loss of Trust. Big Data and Cognitive Computing, 2022, 6, 52.                              | 2.9 | 10        |
| 59 | Short research note: The Beginning Spanish Lexicon: A web-based interface to calculate phonological<br>similarity among Spanish words in adults learning Spanish as a foreign language. Second Language<br>Research, 2012, 28, 103-112. | 1.2 | 9         |
| 60 | Phonological but not semantic influences on the speech-to-song illusion. Quarterly Journal of<br>Experimental Psychology, 2021, 74, 585-597.                                                                                            | 0.6 | 9         |
| 61 | It's good but is it ART?. Behavioral and Brain Sciences, 2000, 23, 336-336.                                                                                                                                                             | 0.4 | 7         |
| 62 | Phonotactic probability of brand names: I'd buy that!. Psychological Research, 2012, 76, 693-698.                                                                                                                                       | 1.0 | 7         |
| 63 | An account of the Speech-to-Song Illusion using Node Structure Theory. PLoS ONE, 2018, 13, e0198656.                                                                                                                                    | 1.1 | 7         |
| 64 | Exploring How Phonotactic Knowledge Can Be Represented in Cognitive Networks. Big Data and Cognitive Computing, 2021, 5, 47.                                                                                                            | 2.9 | 7         |
| 65 | 5. Using English as a â€~Model Language' to Understand Language Processing. , 2014, , 58-73.                                                                                                                                            |     | 6         |
| 66 | Can Network Science Connect Mind, Brain, and Behavior?. , 2019, , 184-197.                                                                                                                                                              |     | 6         |
| 67 | Speech error and tip of the tongue diary for mobile devices. Frontiers in Psychology, 2015, 6, 1190.                                                                                                                                    | 1.1 | 5         |
| 68 | Does age affect perception of the Speech-to-Song Illusion?. PLoS ONE, 2021, 16, e0250042.                                                                                                                                               | 1.1 | 5         |
| 69 | What Do Cognitive Networks Do? Simulations of Spoken Word Recognition Using the Cognitive Network Science Approach. Brain Sciences, 2021, 11, 1628.                                                                                     | 1.1 | 5         |
| 70 | Estimating group size from human speech: Three's a conversation, but four's a crowd. Quarterly<br>Journal of Experimental Psychology, 2017, 70, 62-74.                                                                                  | 0.6 | 4         |
| 71 | Using Network Science and Psycholinguistic Megastudies to Examine the Dimensions of Phonological Similarity. Language and Speech, 2023, 66, 143-174.                                                                                    | 0.6 | 4         |
| 72 | Language processing across the life span: New methodologies to study old questions. Brain and Language, 2006, 99, 224-225.                                                                                                              | 0.8 | 3         |

| #  | Article                                                                                                                                                                  | IF          | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------|
| 73 | Manipulating the characteristics of words and nonwords to better understand word learning.<br>Applied Psycholinguistics, 2006, 27, 594-598.                              | 0.8         | 3         |
| 74 | Network science as a method of measuring language complexity. Poznan Studies in Contemporary<br>Linguistics, 2014, 50, .                                                 | 0.1         | 3         |
| 75 | Using network analyses to examine the extent to which and in what ways psychology is multidisciplinary. Humanities and Social Sciences Communications, 2022, 9, .        | 1.3         | 3         |
| 76 | Effects of cognitive load and type of object on the visual looming bias. Attention, Perception, and Psychophysics, 2021, 83, 1508-1517.                                  | 0.7         | 2         |
| 77 | Representational specificity of lexical form: Implications for models of spoken word recognition.<br>Journal of the Acoustical Society of America, 1996, 100, 2599-2599. | 0.5         | 2         |
| 78 | The influence of phoneme inventory on elicited speech errors in Arabic speakers of English. Mental Lexicon, 2018, 13, 26-37.                                             | 0.2         | 1         |
| 79 | The influence of memory on the speech-to-song illusion. Memory and Cognition, 2022, 50, 1804-1815.                                                                       | 0.9         | 1         |
| 80 | â€~ã€~SLIPâ€ing'' in phonologically similar neighborhoods. Journal of the Acoustical Society of America, 19<br>100, 2571-2572.                                           | 996.<br>0.5 | 0         |
| 81 | A web-based interface to calculate phonological neighborhood density for words and nonwords in<br>Modern Standard Arabic, Bebavior Research Methods, 2022 1              | 2.3         | 0         |