Matthieu Giraud

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2973836/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Aire's Partners in the Molecular Control of Immunological Tolerance. Cell, 2010, 140, 123-135.	28.9	309
2	Aire unleashes stalled RNA polymerase to induce ectopic gene expression in thymic epithelial cells. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 535-540.	7.1	202
3	An IRF8-binding promoter variant and AIRE control CHRNA1 promiscuous expression in thymus. Nature, 2007, 448, 934-937.	27.8	167
4	Association of the PTPN22*R620W polymorphism with autoimmune myasthenia gravis. Annals of Neurology, 2006, 59, 404-407.	5.3	103
5	The deacetylase Sirt1 is an essential regulator of Aire-mediated induction of central immunological tolerance. Nature Immunology, 2015, 16, 737-745.	14.5	85
6	Pleiotropic effects of the 8.1 HLA haplotype in patients with autoimmune myasthenia gravis and thymus hyperplasia. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 15464-15469.	7.1	81
7	Transcriptional programs that control expression of the autoimmune regulator gene Aire. Nature Immunology, 2017, 18, 161-172.	14.5	81
8	<i>Genetic Factors in Autoimmune Myasthenia Gravis</i> . Annals of the New York Academy of Sciences, 2008, 1132, 180-192.	3.8	79
9	An RNAi screen for Aire cofactors reveals a role for Hnrnpl in polymerase release and Aire-activated ectopic transcription. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1491-1496.	7.1	78
10	Human Tolerogenic Dendritic Cells Regulate Immune Responses through Lactate Synthesis. Cell Metabolism, 2019, 30, 1075-1090.e8.	16.2	71
11	Extensive RNA editing and splicing increase immune self-representation diversity in medullary thymic epithelial cells. Genome Biology, 2016, 17, 219.	8.8	67
12	Brief Report: Candidate gene study in systemic sclerosis identifies a rare and functional variant of the <i>TNFAIP3</i> locus as a risk factor for polyautoimmunity. Arthritis and Rheumatism, 2012, 64, 2746-2752.	6.7	63
13	ImmGen at 15. Nature Immunology, 2020, 21, 700-703.	14.5	55
14	Identification of NF-κB and PLCL2 as new susceptibility genes and highlights on a potential role of IRF8 through interferon signature modulation in systemic sclerosis. Arthritis Research and Therapy, 2015, 17, 71.	3.5	41
15	Combined transcriptome studies identify AFF3 as a mediator of the oncogenic effects of β-catenin in adrenocortical carcinoma. Oncogenesis, 2015, 4, e161-e161.	4.9	36
16	Genetics of autoimmune myasthenia gravis: The multifaceted contribution of the HLA complex. Journal of Autoimmunity, 2005, 25, 6-11.	6.5	33
17	Both Polymorphic Variable Number of Tandem Repeats and Autoimmune Regulator Modulate Differential Expression of Insulin in Human Thymic Epithelial Cells. Diabetes, 2011, 60, 336-344. 	0.6	28
18	Genetic control of autoantibody expression in autoimmune myasthenia gravis: role of the self-antigen and of HLA-linked loci. Genes and Immunity, 2004, 5, 398-404.	4.1	24

MATTHIEU GIRAUD

#	Article	IF	CITATIONS
19	Association of the gene encoding the δ-subunit of the muscle acetylcholine receptor (CHRND) with acquired autoimmune myasthenia gravis. Genes and Immunity, 2004, 5, 80-83.	4.1	21
20	AIRE deficiency, from preclinical models to human APECED disease. DMM Disease Models and Mechanisms, 2021, 14, .	2.4	15
21	Aire-dependent genes undergo Clp1-mediated 3'UTR shortening associated with higher transcript stability in the thymus. ELife, 2020, 9, .	6.0	13
22	Thymocytes trigger self-antigen-controlling pathways in immature medullary thymic epithelial stages. ELife, 2022, 11, .	6.0	12
23	The Autoimmune Regulator (AIRE) Gene, the Master Activator of Self-Antigen Expression in the Thymus. , 2019, , 169-189.		11
24	CD8+ T cells variably recognize native versus citrullinated GRP78 epitopes in type 1 diabetes. Diabetes, 2021, 70, db210259.	0.6	11
25	Aireâ€dependent transcripts escape Raver2â€induced spliceâ€event inclusion in the thymic epithelium. EMBO Reports, 2022, 23, e53576.	4.5	6
26	Differentiation of Pluripotent Stem Cells Into Thymic Epithelial Cells and Generation of Thymic Organoids: Applications for Therapeutic Strategies Against APECED. Frontiers in Immunology, 0, 13, .	4.8	6
27	Non-permissive human conventional CD1c+ dendritic cells enable trans-infection of human primary renal tubular epithelial cells and protect BK polyomavirus from neutralization. PLoS Pathogens, 2021, 17, e1009042.	4.7	2
28	Recirculating Foxp3+ regulatory T cells are restimulated in the thymus under Aire control. Cellular and Molecular Life Sciences, 2022, 79, .	5.4	2