Xingnan Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2973778/publications.pdf Version: 2024-02-01

XINCNANLL

#	Article	IF	CITATIONS
1	Identification of Asthma Phenotypes Using Cluster Analysis in the Severe Asthma Research Program. American Journal of Respiratory and Critical Care Medicine, 2010, 181, 315-323.	5.6	1,820
2	Meta-analysis of genome-wide association studies of asthma in ethnically diverse North American populations. Nature Genetics, 2011, 43, 887-892.	21.4	736
3	Sputum neutrophil counts are associated with more severe asthma phenotypes using cluster analysis. Journal of Allergy and Clinical Immunology, 2014, 133, 1557-1563.e5.	2.9	488
4	New genetic signals for lung function highlight pathways and chronic obstructive pulmonary disease associations across multiple ancestries. Nature Genetics, 2019, 51, 481-493.	21.4	350
5	Genome-wide association study of asthma identifies RAD50-IL13 and HLA-DR/DQ regions. Journal of Allergy and Clinical Immunology, 2010, 125, 328-335.e11.	2.9	295
6	Genetic landscape of chronic obstructive pulmonary disease identifies heterogeneous cell-type and phenotype associations. Nature Genetics, 2019, 51, 494-505.	21.4	257
7	Association of sputum and blood eosinophil concentrations with clinical measures of COPD severity: an analysis of the SPIROMICS cohort. Lancet Respiratory Medicine,the, 2017, 5, 956-967.	10.7	211
8	Genome-wide association studies of asthma indicate opposite immunopathogenesis direction from autoimmune diseases. Journal of Allergy and Clinical Immunology, 2012, 130, 861-868.e7.	2.9	130
9	Importance of hedgehog interacting protein and other lung function genes in asthma. Journal of Allergy and Clinical Immunology, 2011, 127, 1457-1465.	2.9	115
10	Genome-wide association and HLA fine-mapping studies identify risk loci and genetic pathways underlying allergic rhinitis. Nature Genetics, 2018, 50, 1072-1080.	21.4	106
11	Genome-wide association study identifies TH1 pathway genes associated with lung function in asthmatic patients. Journal of Allergy and Clinical Immunology, 2013, 132, 313-320.e15.	2.9	98
12	The value of blood cytokines and chemokines in assessing COPD. Respiratory Research, 2017, 18, 180.	3.6	83
13	The IL6R variation Asp358Ala is a potential modifier of lung function in subjects with asthma. Journal of Allergy and Clinical Immunology, 2012, 130, 510-515.e1.	2.9	82
14	Clinical Heterogeneity in the Severe Asthma Research Program. Annals of the American Thoracic Society, 2013, 10, S118-S124.	3.2	74
15	Chronic obstructive pulmonary disease and related phenotypes: polygenic risk scores in population-based and case-control cohorts. Lancet Respiratory Medicine,the, 2020, 8, 696-708.	10.7	69
16	Genetic analyses identify GSDMB associated with asthma severity, exacerbations, and antiviral pathways. Journal of Allergy and Clinical Immunology, 2021, 147, 894-909.	2.9	50
17	Loss-of-function genomic variants highlight potential therapeutic targets for cardiovascular disease. Nature Communications, 2020, 11, 6417.	12.8	39
18	Investigation of the relationship between IL-6 and type 2 biomarkers in patients with severe asthma. Journal of Allergy and Clinical Immunology, 2020, 145, 430-433.	2.9	38

Xingnan Li

#	Article	IF	CITATIONS
19	The Effects of Rare <i>SERPINA1</i> Variants on Lung Function and Emphysema in SPIROMICS. American Journal of Respiratory and Critical Care Medicine, 2020, 201, 540-554.	5.6	38
20	Genome-wide association study of lung function and clinical implication in heavy smokers. BMC Medical Genetics, 2018, 19, 134.	2.1	28
21	Expression of asthma susceptibility genes in bronchial epithelial cells and bronchial alveolar lavage in the Severe Asthma Research Program (SARP) cohort. Journal of Asthma, 2016, 53, 775-782.	1.7	23
22	The effect of BPIFA1/SPLUNC1 genetic variation on its expression and function in asthmatic airway epithelium. JCI Insight, 2019, 4, .	5.0	23
23	Genetic and non-genetic factors affecting the expression of COVID-19-relevant genes in the large airway epithelium. Genome Medicine, 2021, 13, 66.	8.2	21
24	Multiethnic genome-wide and HLA association study of total serum IgE level. Journal of Allergy and Clinical Immunology, 2021, 148, 1589-1595.	2.9	15
25	Genetic Associations and Architecture of Asthma-COPD Overlap. Chest, 2022, 161, 1155-1166.	0.8	15
26	Hot Topic: Precision Medicine for Asthma—Has the Time Come?. Current Allergy and Asthma Reports, 2019, 19, 45.	5.3	13
27	Genetic variation in genes regulating skeletal muscle regeneration and tissue remodelling associated with weight loss in chronic obstructive pulmonary disease. Journal of Cachexia, Sarcopenia and Muscle, 2021, 12, 1803-1817.	7.3	11
28	Polygenic transcriptome risk scores for COPD and lung function improve cross-ethnic portability of prediction in the NHLBI TOPMed program. American Journal of Human Genetics, 2022, 109, 857-870.	6.2	7
29	Myeloid-associated differentiation marker is a novel SP-A-associated transmembrane protein whose expression on airway epithelial cells correlates with asthma severity. Scientific Reports, 2021, 11, 23392.	3.3	6
30	Lung function, airway and peripheral basophils and eosinophils are associated with molecular pharmacogenomic endotypes of steroid response in severe asthma. Thorax, 2022, 77, 452-460.	5.6	3