Murugavel Kathiresan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2973648/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Viologen-based electrochromic materials and devices. Journal of Materials Chemistry C, 2019, 7, 4622-4637.	5.5	291
2	Metal organic framework laden poly(ethylene oxide) based composite electrolytes for all-solid-state Li-S and Li-metal polymer batteries. Electrochimica Acta, 2018, 285, 355-364.	5.2	118
3	Waterborne polyurethane and its nanocomposites: a mini-review for anti-corrosion coating, flame retardancy, and biomedical applications. Advanced Composites and Hybrid Materials, 2022, 5, 641-650.	21.1	106
4	Metal-organic frameworks based membrane as a permselective separator for lithium-sulfur batteries. Electrochimica Acta, 2018, 265, 151-159.	5.2	79
5	Benzylic viologen dendrimers: a review of their synthesis, properties and applications. Polymer Chemistry, 2014, 5, 5873-5884.	3.9	73
6	Ethyl viologen dibromide as a novel dual redox shuttle for supercapacitors. Journal of Materials Chemistry A, 2016, 4, 4562-4569.	10.3	69
7	Influence of MOF ligands on the electrochemical and interfacial properties of PEO-based electrolytes for all-solid- state lithium batteries. Electrochimica Acta, 2019, 319, 189-200.	5.2	64
8	Modulating the charge injection in organic field-effect transistors: fluorinated oligophenyl self-assembled monolayers for high work function electrodes. Journal of Materials Chemistry C, 2015, 3, 3007-3015.	5.5	62
9	Ionic liquids as an electrolyte for the electro synthesis of organic compounds. Chemical Communications, 2015, 51, 17499-17516.	4.1	62
10	Observation of inhomogeneous plasmonic field distribution in a nanocavity. Nature Nanotechnology, 2020, 15, 922-926.	31.5	62
11	A review on chemical and electrochemical methodologies for the sensing of biogenic amines. Analytical Methods, 2020, 12, 3438-3453.	2.7	59
12	A Zn based metal organic framework as a heterogeneous catalyst for C–C bond formation reactions. New Journal of Chemistry, 2019, 43, 3793-3800.	2.8	55
13	Charge–discharge studies of all-solid-state Li/LiFePO ₄ cells with PEO-based composite electrolytes encompassing metal organic frameworks. RSC Advances, 2016, 6, 97180-97186.	3.6	50
14	Solvent-free microwave-assisted conversion of Baylis–Hillman adducts of ninhydrin into functionalized spiropyrrolidines/pyrrolizidines through 1,3-dipolar cycloaddition. Tetrahedron Letters, 2007, 48, 1835-1839.	1.4	40
15	1,4-Phenylenediamine based covalent triazine framework as an electro catalyst. Polymer, 2017, 109, 315-320.	3.8	39
16	Viologens: a versatile organic molecule for energy storage applications. Journal of Materials Chemistry A, 2021, 9, 27215-27233.	10.3	38
17	Porous Organic Polymer-Derived Carbon Composite as a Bimodal Catalyst for Oxygen Evolution Reaction and Nitrophenol Reduction. ACS Omega, 2018, 3, 6251-6258.	3.5	36
18	Zincâ€Catalyzed Nâ€Alkylation of Aromatic Amines with Alcohols: A Ligandâ€Free Approach. Advanced Synthesis and Catalysis, 2020, 362, 4409-4414.	4.3	34

#	Article	IF	CITATIONS
19	High Rate Performing in Situ Nitrogen Enriched Spherical Carbon Particles for Li/Na-Ion Cells. ACS Applied Materials & Interfaces, 2017, 9, 39326-39335.	8.0	30
20	A novel electrochemical sensor based on a nickel-metal organic framework for efficient electrocatalytic oxidation and rapid detection of lactate. New Journal of Chemistry, 2018, 42, 11839-11846.	2.8	30
21	Tuning the Hydrophilic, Hydrophobic, and Ion Exchange Properties of Mesoporous TiO ₂ . Langmuir, 2009, 25, 5371-5379.	3.5	28
22	Reversible 2D Supramolecular Organic Frameworks encompassing Viologen Cation Radicals and CB[8]. Scientific Reports, 2018, 8, 1354.	3.3	27
23	Viologen-based benzylic dendrimers: selective synthesis of 3,5-bis(hydroxymethyl)benzylbromide and conformational analysis of the corresponding viologen dendrimer subunit. Tetrahedron Letters, 2010, 51, 2188-2192.	1.4	26
24	Charge–Discharge and Interfacial Properties of Ionic Liquid-Added Hybrid Electrolytes for Lithium–Sulfur Batteries. ACS Omega, 2019, 4, 3894-3903.	3.5	26
25	Pore size and surface charge control in mesoporous TiO2 using post-grafted SAMs. Physical Chemistry Chemical Physics, 2010, 12, 1473.	2.8	25
26	2D Trimetal-organic framework derived metal carbon hybrid catalyst for urea electro-oxidation and 4-nitrophenol reduction. Chemosphere, 2021, 267, 129243.	8.2	23
27	Nanostructured Graphene Oxide Dots: Synthesis, Characterization, Photoinduced Electron Transfer Studies, and Detection of Explosives/Biomolecules. ACS Omega, 2018, 3, 9096-9104.	3.5	22
28	New D–D′–A Configured Dye for Efficient Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2018, 122, 22241-22251.	3.1	19
29	Tungsten disulfide Quantum Dots Based Disposable Paper Based Lab on GenoChip for Specific Meningitis DNA Detection. Journal of the Electrochemical Society, 2020, 167, 107501.	2.9	18
30	Cobalt(<scp>ii</scp>) ions and cobalt nanoparticle embedded porous organic polymers: an efficient electrocatalyst for water-splitting reactions. Sustainable Energy and Fuels, 2020, 4, 3797-3805.	4.9	18
31	The suppression of lithium dendrites by a triazine-based porous organic polymer-laden PEO-based electrolyte and its application for all-solid-state lithium batteries. Materials Chemistry Frontiers, 2020, 4, 933-940.	5.9	18
32	Porous organic polymer derived metal-free carbon composite as an electrocatalyst for CO2 reduction and water splitting. Journal of the Taiwan Institute of Chemical Engineers, 2020, 106, 183-190.	5.3	17
33	Dimeric and Starâ€Shaped Viologens: Synthesis and Capping interactions with βâ€cyclodextrin. ChemistrySelect, 2016, 1, 354-359.	1.5	16
34	Improved Cycling Performance of Lithium–Sulfur Cell through Supramolecular Interactions. Journal of Physical Chemistry C, 2018, 122, 27843-27849.	3.1	16
35	Recent status and challenges in multifunctional electrocatalysis based on 2D MXenes. Catalysis Science and Technology, 2022, 12, 4413-4441.	4.1	16
36	Shell-by-Shell Inside-Out Complexation of Organic Anions in Flexible and Rigid Pyridinium Dendrimers. Macromolecules, 2011, 44, 8563-8574.	4.8	15

#	Article	IF	CITATIONS
37	A porous organic polymer-coated permselective separator mitigating self-discharge of lithium–sulfur batteries. Materials Advances, 2020, 1, 648-657.	5.4	15
38	Cu-MOF derived CuO nanoparticle decorated amorphous carbon as an electrochemical platform for the sensing of caffeine in real samples. Journal of the Taiwan Institute of Chemical Engineers, 2022, 133, 104248.	5.3	15
39	Dye sensitized membranes within mesoporous TiO2: Photocurrents in aqueous solution. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 216, 35-43.	3.9	14
40	Electropolymerization of thienyl tethered comonomers and application towards the electrocatalytic reduction of nitrobenzene. RSC Advances, 2019, 9, 1895-1902.	3.6	14
41	Facile method of pulse electrodeposited NiO-CeO 2 Sm doped nanocomposite electrode on copper foam for supercapacitor application. Journal of Alloys and Compounds, 2017, 709, 240-247.	5.5	12
42	A pyrene based colorimetric chemosensor for CO2 gas detection triggered by fluoride ion. Chemical Physics Letters, 2019, 719, 67-71.	2.6	12
43	Cu(HBTC)(4,4â€2-bipy)·3DMF nanorods supported on platinum electrode as an electrochemical sensing platform for efficient vitamin B12 detection. Journal of the Taiwan Institute of Chemical Engineers, 2019, 96, 1-10.	5.3	12
44	BaTiO ₃ - <i>g</i> -GO as an efficient permselective material for lithium–sulfur batteries. Materials Chemistry Frontiers, 2021, 5, 950-960.	5.9	12
45	A Supramolecular Investigation on the Interactions between Ethyl terminated Bis–viologen Derivatives with Sulfonato Calix[4]arenes. ChemistrySelect, 2017, 2, 1175-1182.	1.5	11
46	A combined experimental and computational investigation on pyrene based D–π–A dyes. Physical Chemistry Chemical Physics, 2018, 20, 6264-6273.	2.8	11
47	Ethylviologen Hexafluorophosphate as Electrolyte Additive for High-Voltage Nickel-Rich Layered Cathode. Journal of Physical Chemistry C, 2019, 123, 28604-28610.	3.1	11
48	Facile Construction of a Supramolecular Organic Framework Using Naphthyl Viologen Guests and CB[8] Host via Charge-Transfer Complexation. ACS Omega, 2019, 4, 8528-8538.	3.5	11
49	Facile synthesis of carbon nanocubes and its applications for sensing antibiotics. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 403, 112855.	3.9	11
50	A review on biopolymer-derived electrospun nanofibers for biomedical and antiviral applications. Biomaterials Science, 2022, 10, 4424-4442.	5.4	11
51	Electrochemical fabrication of dendritic silver–copper bimetallic nanomaterials in protic ionic liquid for electrocarboxylation. Journal of the Taiwan Institute of Chemical Engineers, 2018, 87, 158-164.	5.3	10
52	Ag _{<i>x</i>} Cu _{<i>y</i>} Ni _{<i>z</i>} Trimetallic Alloy Catalysts for the Electrocatalytic Reduction of Benzyl Bromide in the Presence of Carbon Dioxide. ACS Omega, 2018, 3, 17125-17134.	3.5	10
53	Non-noble metal (Ni, Cu)-carbon composite derived from porous organic polymers for high-performance seawater electrolysis. Environmental Pollution, 2021, 289, 117861.	7.5	9
54	Metal/metal oxide-decorated covalent organic frameworks as electrocatalysts for electrocatalysts for electrocarboxylation and water splitting. Materials Chemistry and Physics, 2022, 285, 126104.	4.0	9

#	Article	IF	CITATIONS
55	In-situ monitoring of redox processes of viologen at Au(hkl) single-crystal electrodes using electrochemical shell-isolated nanoparticle-enhanced Raman spectroscopy. Electrochemistry Communications, 2016, 72, 131-134.	4.7	8
56	Modified viologen as an efficient anolyte for aqueous organic redox flow batteries. Materials Letters, 2022, 314, 131876.	2.6	8
57	Triazine interlinked covalent organic polymer as an efficient anti-bacterial agent. Materials Today Chemistry, 2021, 19, 100408.	3.5	7
58	Iron oxide decorated N-doped carbon derived from poly(ferrocene-urethane) interconnects for the oxygen reduction reaction. New Journal of Chemistry, 2018, 42, 15629-15638.	2.8	6
59	Evaluation of negolyte properties of supramolecular binary complexes based on viologen-cucurbit[7]urils. New Journal of Chemistry, 2022, 46, 5606-5613.	2.8	6
60	Influence of Additives on the Electrochemical and Interfacial Properties of SiO _{<i>x</i>} -Based Anode Materials for Lithium–Sulfur Batteries. Langmuir, 2022, 38, 2423-2434.	3.5	6
61	Trimethylenedipyridinium Dendrimers: Synthesis and Sequential Complexation of Anthraquinone Disulfonate in Molecular Shells. Macromolecules, 2010, 43, 9248-9256.	4.8	5
62	Pyrene based chemosensor for carbon dioxide gas – Meticulous investigations and digital image based RGB analysis. Sensors and Actuators Reports, 2020, 2, 100007.	4.4	5
63	TEMPO‣abeled Viologen Dendrimers: Synthesis, Characterization, and Preliminary Distance Measurements. Macromolecular Chemistry and Physics, 2017, 218, 1700142.	2.2	4
64	Charge-discharge behavior of Li-O2 cell with viologen as redox catalyst: influence of cationic charge. Ionics, 2019, 25, 3837-3845.	2.4	2
65	Molecularly engineered oxygen deficient magnetite decorated carbon as electrocatalysts for oxygen reduction reaction. Molecular Catalysis, 2021, 514, 111837.	2.0	2

66 Graphitic carbon nitrides: synthesis and properties. , 2022, , 1-16.

0