Fubao Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2973585/publications.pdf

Version: 2024-02-01

		304743	361022
36	1,420 citations	22	35
papers	citations	h-index	g-index
37	37	37	1348
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Organosolv pretreatment by crude glycerol from oleochemicals industry for enzymatic hydrolysis of wheat straw. Bioresource Technology, 2008, 99, 5474-5479.	9.6	155
2	Enhanced enzymatic hydrolysis of wheat straw by aqueous glycerol pretreatment. Bioresource Technology, 2008, 99, 6156-6161.	9.6	127
3	Accessory enzymes influence cellulase hydrolysis of the model substrate and the realistic lignocellulosic biomass. Enzyme and Microbial Technology, 2015, 79-80, 42-48.	3.2	118
4	The impact of glycerol organosolv pretreatment on the chemistry and enzymatic hydrolyzability of wheat straw. Bioresource Technology, 2015, 187, 354-361.	9.6	107
5	Evaluation of enzymatic hydrolysis of wheat straw pretreated by atmospheric glycerol autocatalysis. Journal of Chemical Technology and Biotechnology, 2007, 82, 1039-1044.	3.2	87
6	Enhanced High-Solids Fed-Batch Enzymatic Hydrolysis of Sugar Cane Bagasse with Accessory Enzymes and Additives at Low Cellulase Loading. ACS Sustainable Chemistry and Engineering, 2018, 6, 12787-12796.	6.7	86
7	Industrially relevant hydrolyzability and fermentability of sugarcane bagasse improved effectively by glycerol organosolv pretreatment. Biotechnology for Biofuels, 2016, 9, 59.	6.2	66
8	Pretreating lignocellulosic biomass by the concentrated phosphoric acid plus hydrogen peroxide (PHP) for enzymatic hydrolysis: Evaluating the pretreatment flexibility on feedstocks and particle sizes. Bioresource Technology, 2014, 166, 420-428.	9.6	56
9	Comparison of atmospheric aqueous glycerol and steam explosion pretreatments of wheat straw for enhanced enzymatic hydrolysis. Journal of Chemical Technology and Biotechnology, 2008, 83, 707-714.	3.2	48
10	Trends and hassles in the microbial production of lactic acid from lignocellulosic biomass. Environmental Technology and Innovation, 2021, 21, 101337.	6.1	45
11	Glycerol organosolv pretreatment can unlock lignocellulosic biomass for production of fermentable sugars: Present situation and challenges. Bioresource Technology, 2022, 344, 126264.	9.6	44
12	One-step lignocellulose fractionation using acid/pentanol pretreatment for enhanced fermentable sugar and reactive lignin production with efficient pentanol retrievability. Bioresource Technology, 2022, 359, 127503.	9.6	42
13	Fed-batch high-solids enzymatic saccharification of lignocellulosic substrates with a combination of additives and accessory enzymes. Industrial Crops and Products, 2020, 146, 112156.	5.2	41
14	Mild fractionation of sugarcane bagasse into fermentable sugars and \hat{l}^2 -O-4 linkage-rich lignin based on acid-catalysed crude glycerol pretreatment. Bioresource Technology, 2020, 318, 124059.	9.6	35
15	Bioprocessing of tea oil fruit hull with acetic acid organosoly pretreatment in combination with alkaline H2O2. Biotechnology for Biofuels, 2017, 10, 86.	6.2	34
16	Comparison of biodiesel production using a novel porous Zn/Al/Co complex oxide prepared from different methods: Physicochemical properties, reaction kinetic and thermodynamic studies. Renewable Energy, 2022, 181, 1419-1430.	8.9	31
17	Alleviating lignin repolymerization by carbocation scavenger for effective production of fermentable sugars from combined liquid hot water and green-liquor pretreated softwood biomass. Energy Conversion and Management, 2022, 251, 114956.	9.2	29
18	Biorefining fractionation of the Camellia oleifera Abel. hull into diverse bioproducts with a two-stage organosolv extraction. Industrial Crops and Products, 2016, 94, 790-799.	5.2	28

#	Article	IF	Citations
19	Mild Acid-Catalyzed Atmospheric Glycerol Organosolv Pretreatment Effectively Improves Enzymatic Hydrolyzability of Lignocellulosic Biomass. ACS Omega, 2019, 4, 20015-20023.	3.5	28
20	Thermostable Cellulases / Xylanases From Thermophilic and Hyperthermophilic Microorganisms: Current Perspective. Frontiers in Bioengineering and Biotechnology, 2021, 9, 794304.	4.1	28
21	Mild fractionation of poplar into reactive lignin via lignin-first strategy and its enhancement on cellulose saccharification. Bioresource Technology, 2022, 343, 126122.	9.6	25
22	Optimization of onâ€site cellulase preparation for efficient hydrolysis of atmospheric glycerol organosolv pretreated wheat straw. Journal of Chemical Technology and Biotechnology, 2018, 93, 2083-2092.	3.2	23
23	Synergism of Recombinant <i>Podospora anserina Pa</i> AA9B with Cellulases Containing AA9s Can Boost the Enzymatic Hydrolysis of Cellulosic Substrates. ACS Sustainable Chemistry and Engineering, 2020, 8, 11986-11993.	6.7	19
24	Evaluation of the mild Mg(OH)2-AQ aided alkaline oxidation degumming process of ramie fiber at an industrial scale. Industrial Crops and Products, 2019, 137, 694-701.	5. 2	17
25	Efficiency enhancement of a new cellulase cocktail at low enzyme loading for high solid digestion of alkali catalyzed atmospheric glycerol organosolvent pre-treated sugarcane bagasse. Bioresource Technology, 2021, 338, 125505.	9.6	17
26	Heterologous expression of codon optimized Trichoderma reesei Cel6A in Pichia pastoris. Enzyme and Microbial Technology, 2016, 92, 107-116.	3. 2	15
27	Co-production of levulinic acid and lignin adsorbent from aspen wood with combination of liquid hot water and green-liquor pretreatments. Journal of Cleaner Production, 2022, 366, 132817.	9.3	13
28	Construction and optimization of <i>trans</i> à€4â€hydroxyâ€Lâ€proline production recombinant <i>E. coli</i> strain taking the glycerol as carbon source. Journal of Chemical Technology and Biotechnology, 2016, 91, 2389-2398.	3.2	12
29	Highly efficient microbial lipid synthesis from co-fermentation of enzymatic hydrolysate of sugarcane bagasse by a Trichosporon dermatis mutant. Industrial Crops and Products, 2021, 171, 113975.	5.2	11
30	Enhanced heterologous expression of <i>Trichoderma reesei Cel5A</i> / <i>Cel6A</i> in <i>Pichia pastoris</i> with extracellular coâ€expression of <i>Vitreoscilla</i> hemoglobin. Journal of Chemical Technology and Biotechnology, 2018, 93, 35-42.	3.2	9
31	Ceramic membrane pretreatment of monosodium glutamate isoelectric supernatant to facilitate (NH ₄) ₂ SO ₄ recovery by electrodialysis. Journal of Chemical Technology and Biotechnology, 2008, 83, 1027-1033.	3.2	6
32	Recombinant expression of <i>Aspergillus niger</i> GH10 endoâ€xylanase in <i>Pichia pastoris</i> by constructing a doubleâ€plasmid coâ€expression system. Journal of Chemical Technology and Biotechnology, 2020, 95, 535-543.	3.2	6
33	Factors affecting the hydrolytic action of xylanase during pennisetum saccharification: role of lignin. Cellulose, 2020, 27, 3143-3152.	4.9	4
34	Constructing a bacterial cellulose-based bacterial sensor platform by enhancing cell affinity <i>via</i> a surface-exposed carbohydrate binding module. Green Chemistry, 2021, 23, 9600-9609.	9.0	4
35	Characterization of the complex involved in regulating V-ATPase activity of the vacuolar and endosomal membrane. Journal of Bioenergetics and Biomembranes, 2017, 49, 347-355.	2.3	3
36	Constitutive expression of codon optimized Trichoderma reesei TrCel5A in Pichia pastoris using GAP promoter. Systems Microbiology and Biomanufacturing, 0, , .	2.9	1