Anna I Sulatskaya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2973036/publications.pdf

Version: 2024-02-01

47 papers 1,255 citations

16 h-index 361022 35 g-index

48 all docs 48 docs citations

times ranked

48

1557 citing authors

#	Article	IF	CITATIONS
1	ÂÂOmpF porins of <i>Enterobacteriaceae</i> possess amyloidogenic properties. FASEB Journal, 2022, 36, .	0.5	O
2	New Evidence on a Distinction between $A\hat{l}^2$ 40 and $A\hat{l}^2$ 42 Amyloids: Thioflavin T Binding Modes, Clustering Tendency, Degradation Resistance, and Cross-Seeding. International Journal of Molecular Sciences, 2022, 23, 5513.	4.1	7
3	Structural Polymorphism of Lysozyme Amyloid Fibrils. Cell and Tissue Biology, 2022, 16, 259-267.	0.4	1
4	sfGFP throws light on the early stages of \hat{l}^2 -barrel amyloidogenesis. International Journal of Biological Macromolecules, 2022, 215, 224-234.	7.5	5
5	Ans Fluorescent Probe Induces Clustering of Amyloid Fibers. Biophysical Journal, 2021, 120, 23a.	0.5	1
6	Trypsin Induced Degradation of Amyloid Fibrils. International Journal of Molecular Sciences, 2021, 22, 4828.	4.1	14
7	\hat{l}^2 -Barrels and Amyloids: Structural Transitions, Biological Functions, and Pathogenesis. International Journal of Molecular Sciences, 2021, 22, 11316.	4.1	11
8	New findings on GFP-like protein application as fluorescent tags: Fibrillogenesis, oligomerization, and amorphous aggregation. International Journal of Biological Macromolecules, 2021, 192, 1304-1310.	7.5	13
9	Thermostability of lysozyme amyloid fibrils. Journal of Physics: Conference Series, 2021, 2086, 012117.	0.4	O
10	Accumulation of storage proteins in plant seeds is mediated by amyloid formation. PLoS Biology, 2020, 18, e3000564.	5 . 6	53
11	Alpha-B-Crystallin Effect on Mature Amyloid Fibrils: Different Degradation Mechanisms and Changes in Cytotoxicity. International Journal of Molecular Sciences, 2020, 21, 7659.	4.1	7
12	Point mutations affecting yeast prion propagation change the structure of its amyloid fibrils. Journal of Molecular Liquids, 2020, 314, 113618.	4.9	4
13	Denaturing Effect of Guanidine Hydrohloride on Amyloid Fibrils. Biophysical Journal, 2020, 118, 509a.	0.5	O
14	Interaction of Benzothiazole Dye Thioflavin T with Acidic Protein Prothymosin Alpha. Biophysical Journal, 2020, 118, 372a-373a.	0.5	0
15	Denaturant effect on amyloid fibrils: Declasterization, depolymerization, denaturation and reassembly. International Journal of Biological Macromolecules, 2020, 150, 681-694.	7.5	15
16	Effect of the fluorescent probes ThT and ANS on the mature amyloid fibrils. Prion, 2020, 14, 67-75.	1.8	46
17	Two Novel Amyloid Proteins, RopA and RopB, from the Root Nodule Bacterium Rhizobium leguminosarum. Biomolecules, 2019, 9, 694.	4.0	23
18	Structural Analogue of Thioflavin T, DMASEBT, as a Tool for Amyloid Fibrils Study. Analytical Chemistry, 2019, 91, 3131-3140.	6.5	16

#	Article	IF	Citations
19	The Effect of Solution pH on the Structure and Stability of Lysozyme Amyloid Fibrils. Biophysical Journal, 2019, 116, 196a.	0.5	o
20	Thioflavin T Interaction with Acetylcholinesterase: New Evidence of 1:1 Binding Stoichiometry Obtained with Samples Prepared by Equilibrium Microdialysis. ACS Chemical Neuroscience, 2018, 9, 1793-1801.	3.5	7
21	Structural Features of Amyloid Fibrils Formed from the Full-Length and Truncated Forms of Beta-2-Microglobulin Probed by Fluorescent Dye Thioflavin T. International Journal of Molecular Sciences, 2018, 19, 2762.	4.1	17
22	Trans-2-[4-(dimethylamino)styryl]-3-ethyl-1,3-benzothiazolium perchlorate - New fluorescent dye for testing of amyloid fibrils and study of their structure. Dyes and Pigments, 2018, 157, 385-395.	3.7	14
23	Investigation of α-Synuclein Amyloid Fibrils Using the Fluorescent Probe Thioflavin T. International Journal of Molecular Sciences, 2018, 19, 2486.	4.1	36
24	M60-like metalloprotease domain of the Escherichia coli YghJ protein forms amyloid fibrils. PLoS ONE, 2018, 13, e0191317.	2.5	11
25	Effects of low urea concentrations on protein-water interactions. Journal of Biomolecular Structure and Dynamics, 2017, 35, 207-218.	3.5	8
26	Formation of trans-2-[4-(Dimethylamino)Styryl]-3-Ethyl-1,3-Benzothiazolium Perchlorate Dimers in the Presence of Sodium Polystyrene Sulfonate. Journal of Applied Spectroscopy, 2017, 83, 917-923.	0.7	3
27	Thioflavin T fluoresces as excimer in highly concentrated aqueous solutions and as monomer being incorporated in amyloid fibrils. Scientific Reports, 2017, 7, 2146.	3.3	66
28	Different conditions of fibrillogenesis cause polymorphism of lysozyme amyloid fibrils. Journal of Molecular Structure, 2017, 1140, 52-58.	3.6	27
29	Photophysical Properties of Fluorescent Probe Thioflavin T in Crowded Milieu. Journal of Spectroscopy, 2017, 2017, 1-10.	1.3	13
30	Stoichiometry and Affinity of Thioflavin T Binding to Sup35p Amyloid Fibrils. PLoS ONE, 2016, 11, e0156314.	2.5	23
31	Photophysical Properties of Thioflavin T. Does it form Excimers When Integrated into Amyloid Fibrils?. Biophysical Journal, 2016, 110, 218a.	0.5	0
32	High Fluorescence Anisotropy of Thioflavin T in Aqueous Solution Resulting from Its Molecular Rotor Nature. Analytical Chemistry, 2016, 88, 718-724.	6.5	32
33	Protein unfolding in crowded milieu: what crowding can do to a protein undergoing unfolding?. Journal of Biomolecular Structure and Dynamics, 2016, 34, 2155-2170.	3.5	28
34	Spectral Manifestations of Thioflavin T Aggregation. Journal of Applied Spectroscopy, 2015, 82, 33-39.	0.7	15
35	Fluorescence of Dyes in Solutions with High Absorbance. Inner Filter Effect Correction. PLoS ONE, 2014, 9, e103878.	2.5	182
36	Investigation of the kinetics of insulin amyloid fibrils formation. Cell and Tissue Biology, 2014, 8, 186-191.	0.4	9

#	Article	IF	CITATIONS
37	Photophysical Properties of Trans-2-[4-(dimethylamino)styryl]-3-ethyl-1,3-benzothiazolium Perchlorate, a New Structural Analog of Thioflavin T. Journal of Applied Spectroscopy, 2014, 81, 205-213.	0.7	3
38	New Solution of Eliminating the Inner Filter Effect in Fluorescent Measurements. Biophysical Journal, 2013, 104, 345a.	0.5	0
39	Binding Stoichiometry and Affinity of Fluorescent Dyes to Proteins in Different Structural States. Methods in Molecular Biology, 2012, 895, 441-460.	0.9	15
40	Interaction of Thioflavin T with Amyloid Fibrils: Fluorescence Quantum Yield of Bound Dye. Journal of Physical Chemistry B, 2012, 116, 2538-2544.	2.6	84
41	Reevaluation of ANS Binding to Human and Bovine Serum Albumins: Key Role of Equilibrium Microdialysis in Ligand – Receptor Binding Characterization. PLoS ONE, 2012, 7, e40845.	2.5	71
42	Analyzing Thioflavin T Binding to Amyloid Fibrils by an Equilibrium Microdialysis-Based Technique. PLoS ONE, 2012, 7, e30724.	2.5	63
43	A New Trend in the Experimental Methodology for the Analysis of the Thioflavin T Binding to Amyloid Fibrils. Molecular Neurobiology, 2012, 45, 488-498.	4.0	56
44	Interaction of Thioflavin T with Amyloid Fibrils: Stoichiometry and Affinity of Dye Binding, Absorption Spectra of Bound Dye. Journal of Physical Chemistry B, 2011, 115, 11519-11524.	2.6	92
45	High stability of trehalose/maltose binding protein from <i>Thermococcus litoralis</i> makes it a good candidate as a sensitive element in biosensor systems for sugar control. Spectroscopy, 2010, 24, 349-353.	0.8	1
46	Spectral properties and factors determining high quantum yield of thioflavin T incorporated in amyloid fibrils. Spectroscopy, 2010, 24, 169-172.	0.8	11
47	Fluorescence Quantum Yield of Thioflavin T in Rigid Isotropic Solution and Incorporated into the Amyloid Fibrils. PLoS ONE, 2010, 5, e15385.	2.5	152