List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2972880/publications.pdf Version: 2024-02-01

IOHANNES FÃI/ DNKDANZ

#	Article	IF	CITATIONS
1	Comparing Boosting and Bagging for Decision Trees of Rankings. Journal of Classification, 2022, 39, 78-99.	1.2	6
2	A flexible class of dependence-aware multi-label loss functions. Machine Learning, 2022, 111, 713.	3.4	1
3	Sum-Product Networks for Early Outbreak Detection of Emerging Diseases. Lecture Notes in Computer Science, 2021, , 61-71.	1.0	о
4	Gradient-Based Label Binning in Multi-label Classification. Lecture Notes in Computer Science, 2021, , 462-477.	1.0	5
5	A Unifying Framework and Comparative Evaluation of Statistical and Machine Learning Approaches to Non-Specific Syndromic Surveillance. Computers, 2021, 10, 32.	2.1	3
6	A review of possible effects of cognitive biases on interpretation of rule-based machine learning models. Artificial Intelligence, 2021, 295, 103458.	3.9	45
7	Learning Ordinal Embedding from Sets. Entropy, 2021, 23, 964.	1.1	1
8	Learning Gradient Boosted Multi-label Classification Rules. Lecture Notes in Computer Science, 2021, , 124-140.	1.0	10
9	Revisiting Non-specific Syndromic Surveillance. Lecture Notes in Computer Science, 2021, , 128-140.	1.0	1
10	Elliptical Ordinal Embedding. Lecture Notes in Computer Science, 2021, , 323-333.	1.0	1
11	An Empirical Investigation Into Deep and Shallow Rule Learning. Frontiers in Artificial Intelligence, 2021, 4, 689398.	2.0	3
12	Some Chess-Specific Improvements for Perturbation-Based Saliency Maps. , 2021, , .		2
13	Predicting Human Card Selection in Magic: The Gathering with Contextual Preference Ranking. , 2021, ,		2
14	Correlation-Based Discovery of Disease Patterns for Syndromic Surveillance. Frontiers in Big Data, 2021, 4, 784159.	1.8	0
15	Advances in Machine Learning for the Behavioral Sciences. American Behavioral Scientist, 2020, 64, 145-175.	2.3	5
16	On cognitive preferences and the plausibility of rule-based models. Machine Learning, 2020, 109, 853-898.	3.4	43
17	Learning to Play the Chess Variant Crazyhouse Above World Champion Level With Deep Neural Networks and Human Data. Frontiers in Artificial Intelligence, 2020, 3, 24.	2.0	4
18	Rule-Based Multi-label Classification: Challenges and Opportunities. Lecture Notes in Computer Science, 2020, , 3-19.	1.0	7

#	Article	IF	CITATIONS
19	On Aggregation in Ensembles of Multilabel Classifiers. Lecture Notes in Computer Science, 2020, , 533-547.	1.0	4
20	Conformal Rule-Based Multi-label Classification. Lecture Notes in Computer Science, 2020, , 290-296.	1.0	0
21	Improving the Fusion of Outbreak Detection Methods with Supervised Learning. Lecture Notes in Computer Science, 2020, , 55-66.	1.0	0
22	Driver Information Embedding with Siamese LSTM networks. , 2019, , .		8
23	The PRORETA 4 City Assistant System. Automatisierungstechnik, 2019, 67, 783-798.	0.4	1
24	Mending is Better than Ending: Adapting Immutable Classifiers to Nonstationary Environments using Ensembles of Patches. , 2019, , .		0
25	Patching Deep Neural Networks for Nonstationary Environments. , 2019, , .		5
26	Ordinal Bucketing for Game Trees using Dynamic Quantile Approximation. , 2019, , .		1
27	Learning Analogy-Preserving Sentence Embeddings for Answer Selection. , 2019, , .		8
28	Personalized Transaction Kernels for Recommendation Using MCTS. Lecture Notes in Computer Science, 2019, , 338-352.	1.0	0
29	On the Trade-Off Between Consistency and Coverage in Multi-label Rule Learning Heuristics. Lecture Notes in Computer Science, 2019, , 96-111.	1.0	1
30	Informed Hybrid Game Tree Search for General Video Game Playing. IEEE Transactions on Games, 2018, 10, 78-90.	1.2	13
31	Towards Semi-Supervised Classification of Event Streams via Denoising Autoencoders. , 2018, , .		2
32	Using Past Maneuver Executions for Personalization of a Driver Model. , 2018, , .		6
33	Determining Factors for Slum Growth with Predictive Data Mining Methods. Urban Science, 2018, 2, 81.	1.1	15
34	Learning Interpretable Rules for Multi-Label Classification. The Springer Series on Challenges in Machine Learning, 2018, , 81-113.	10.4	6
35	What's Important in a Text? An Extensive Evaluation of Linguistic Annotations for Summarization. , 2018, , .		1
36	Preference-Based Monte Carlo Tree Search. Lecture Notes in Computer Science, 2018, , 327-340.	1.0	3

#	Article	IF	CITATIONS
37	The Need for Interpretability Biases. Lecture Notes in Computer Science, 2018, , 15-27.	1.0	2
38	Interactive Data Analytics for the Humanities. Lecture Notes in Computer Science, 2018, , 527-549.	1.0	2
39	Exploiting Anti-monotonicity of Multi-label Evaluation Measures for Inducing Multi-label Rules. Lecture Notes in Computer Science, 2018, , 29-42.	1.0	4
40	Which Scores to Predict in Sentence Regression for Text Summarization?. , 2018, , .		6
41	Leveraging Reproduction-Error Representations for Multi-Instance Classification. Lecture Notes in Computer Science, 2018, , 83-95.	1.0	1
42	Refinement and selection heuristics in subgroup discovery and classification rule learning. Expert Systems With Applications, 2017, 81, 147-162.	4.4	20
43	Re-training Deep Neural Networks to Facilitate Boolean Concept Extraction. Lecture Notes in Computer Science, 2017, , 127-143.	1.0	4
44	Time-to-lane-change prediction with deep learning. , 2017, , .		35
45	Machine Learning and Game Playing. , 2017, , 783-788.		4
46	Multi-objective Optimisation-Based Feature Selection for Multi-label Classification. Lecture Notes in Computer Science, 2017, , 38-41.	1.0	7
47	Classification Rule. , 2017, , 209-209.		0
48	Covering Algorithm. , 2017, , 293-294.		0
49	Preference Learning. , 2017, , 1000-1005.		Ο
50	Decision Lists and Decision Trees. , 2017, , 328-329.		1
51	Decision Stump. , 2017, , 330-330.		1
52	Decision List. , 2017, , 328-328.		0
53	Rule Set. , 2017, , 1121-1121.		0
54	Decision Tree. , 2017, , 330-335.		5

#	Article	IF	CITATIONS
55	Rule Learning. , 2017, , 1117-1121.		Ο
56	Rank Correlation. , 2017, , 1055-1055.		0
57	Pruning. , 2017, , 1031-1032.		Ο
58	Class Binarization. , 2017, , 203-204.		1
59	Divide-and-Conquer Learning. , 2017, , 372-372.		Ο
60	Evaluation of Different Heuristics for Accommodating Asymmetric Loss Functions in Regression. Lecture Notes in Computer Science, 2017, , 67-81.	1.0	1
61	Special Issue on Discovery Science. Information Sciences, 2016, 329, 849-850.	4.0	Ο
62	Predicting Cargo Train Failures: A Machine Learning Approach for a Lightweight Prototype. Lecture Notes in Computer Science, 2016, , 151-166.	1.0	4
63	Shorter Rules Are Better, Aren't They?. Lecture Notes in Computer Science, 2016, , 279-294.	1.0	6
64	Preference Learning. , 2016, , 1-7.		0
65	Covering Algorithm. , 2016, , 1-2.		Ο
66	Rule Learning. , 2016, , 1-5.		0
67	Machine Learning and Game Playing. , 2016, , 1-6.		Ο
68	A Brief Overview of Rule Learning. Lecture Notes in Computer Science, 2015, , 54-69.	1.0	34
69	On Learning From Game Annotations. IEEE Transactions on Games, 2015, 7, 304-316.	1.7	9
70	Predicting Unseen Labels Using Label Hierarchies in Large-Scale Multi-label Learning. Lecture Notes in Computer Science, 2015, , 102-118.	1.0	7
71	Graded Multilabel Classification by Pairwise Comparisons. , 2014, , .		17
72	Efficient implementation of class-based decomposition schemes for NaÃ ⁻ ve Bayes. Machine Learning, 2014, 96, 295-309.	3.4	15

#	Article	IF	CITATIONS
73	Separating Rule Refinement and Rule Selection Heuristics in Inductive Rule Learning. Lecture Notes in Computer Science, 2014, , 114-129.	1.0	10
74	Large-Scale Multi-label Text Classification — Revisiting Neural Networks. Lecture Notes in Computer Science, 2014, , 437-452.	1.0	180
75	Editorial: Preference learning and ranking. Machine Learning, 2013, 93, 185-189.	3.4	12
76	A Policy Iteration Algorithm for Learning from Preference-Based Feedback. Lecture Notes in Computer Science, 2013, , 427-437.	1.0	1
77	Rule-based Methods. , 2013, , 1883-1888.		4
78	Preference-based reinforcement learning: a formal framework and a policy iteration algorithm. Machine Learning, 2012, 89, 123-156.	3.4	56
79	Foundations of Rule Learning. Cognitive Technologies, 2012, , .	0.5	199
80	Efficient prediction algorithms for binary decomposition techniques. Data Mining and Knowledge Discovery, 2012, 24, 40-77.	2.4	14
81	Machine Learning and Data Mining. Cognitive Technologies, 2012, , 1-17.	0.5	7
82	Multi-label LeGo — Enhancing Multi-label Classifiers with Local Patterns. Lecture Notes in Computer Science, 2012, , 114-125.	1.0	9
83	Formal Framework for Rule Analysis. Cognitive Technologies, 2012, , 57-63.	0.5	0
84	Pruning of Rules and Rule Sets. Cognitive Technologies, 2012, , 187-216.	0.5	3
85	Preference Learning. , 2012, , 2669-2672.		0
86	Learning Rule Sets. Cognitive Technologies, 2012, , 171-186.	0.5	1
87	Error-Correcting Output Codes as a Transformation from Multi-Class to Multi-Label Prediction. Lecture Notes in Computer Science, 2012, , 254-267.	1.0	0
88	Beyond Concept Learning. Cognitive Technologies, 2012, , 217-246.	0.5	2
89	Rule Evaluation Measures. Cognitive Technologies, 2012, , 135-169.	0.5	2
90	Selected Applications. Cognitive Technologies, 2012, , 267-298.	0.5	0

#	Article	IF	CITATIONS
91	A review and comparison of strategies for handling missing values in separate-and-conquer rule learning. Journal of Intelligent Information Systems, 2011, 36, 73-98.	2.8	18
92	On exploiting hierarchical label structure with pairwise classifiers. SIGKDD Explorations: Newsletter of the Special Interest Group (SIG) on Knowledge Discovery & Data Mining, 2011, 12, 21-25.	3.2	4
93	Preference-Based Policy Iteration: Leveraging Preference Learning for Reinforcement Learning. Lecture Notes in Computer Science, 2011, , 312-327.	1.0	14
94	Rule Stacking: An Approach for Compressing an Ensemble of Rule Sets into a Single Classifier. Lecture Notes in Computer Science, 2011, , 323-334.	1.0	6
95	Learning from Label Preferences. Lecture Notes in Computer Science, 2011, , 2-17.	1.0	0
96	Machine Learning and Game Playing. , 2011, , 633-637.		3
97	On predictive accuracy and risk minimization in pairwise label ranking. Journal of Computer and System Sciences, 2010, 76, 49-62.	0.9	29
98	On the quest for optimal rule learning heuristics. Machine Learning, 2010, 78, 343-379.	3.4	57
99	Guest Editorial: Global modeling using local patterns. Data Mining and Knowledge Discovery, 2010, 21, 1-8.	2.4	12
100	Efficient voting prediction for pairwise multilabel classification. Neurocomputing, 2010, 73, 1164-1176.	3.5	57
101	LEARNING TO RECOGNIZE MISSING E-MAIL ATTACHMENTS. Applied Artificial Intelligence, 2010, 24, 443-462.	2.0	0
102	Efficient Multilabel Classification Algorithms for Large-Scale Problems in the Legal Domain. Lecture Notes in Computer Science, 2010, , 192-215.	1.0	27
103	Explicit Feature Construction and Manipulation for Covering Rule Learning Algorithms. Studies in Computational Intelligence, 2010, , 121-146.	0.7	10
104	Preference Learning: An Introduction. , 2010, , 1-17.		46
105	Preference Learning and Ranking by Pairwise Comparison. , 2010, , 65-82.		38
106	Exploiting Code Redundancies in ECOC. Lecture Notes in Computer Science, 2010, , 266-280.	1.0	3
107	A Re-evaluation of the Over-Searching Phenomenon in Inductive Rule Learning. , 2009, , .		6

#	Article	IF	CITATIONS
109	Efficient Decoding of Ternary Error-Correcting Output Codes for Multiclass Classification. Lecture Notes in Computer Science, 2009, , 189-204.	1.0	5
110	Binary Decomposition Methods for Multipartite Ranking. Lecture Notes in Computer Science, 2009, , 359-374.	1.0	39
111	An Exploitative Monte-Carlo Poker Agent. Lecture Notes in Computer Science, 2009, , 65-72.	1.0	5
112	An Empirical Comparison of Probability Estimation Techniques for Probabilistic Rules. Lecture Notes in Computer Science, 2009, , 317-331.	1.0	6
113	Multilabel classification via calibrated label ranking. Machine Learning, 2008, 73, 133-153.	3.4	701
114	Label ranking by learning pairwise preferences. Artificial Intelligence, 2008, 172, 1897-1916.	3.9	378
115	Pairwise learning of multilabel classifications with perceptrons. , 2008, , .		33
116	LEARNING THE PIECE VALUES FOR THREE CHESS VARIANTS. ICGA Journal, 2008, 31, 209-233.	0.2	9
117	Efficient Pairwise Multilabel Classification for Large-Scale Problems in the Legal Domain. Lecture Notes in Computer Science, 2008, , 50-65.	1.0	52
118	An Empirical Investigation of the Trade-Off between Consistency and Coverage in Rule Learning Heuristics. Lecture Notes in Computer Science, 2008, , 40-51.	1.0	3
119	Learning Preference Models from Data: On the Problem of Label Ranking and Its Variants. CISM International Centre for Mechanical Sciences, Courses and Lectures, 2008, , 283-304.	0.3	Ο
120	On Meta-Learning Rule Learning Heuristics. , 2007, , .		7
121	Efficient Pairwise Classification. Lecture Notes in Computer Science, 2007, , 658-665.	1.0	56
122	On Minimizing the Position Error in Label Ranking. Lecture Notes in Computer Science, 2007, , 583-590.	1.0	3
123	Timing, Sequencing, and Quantum of Life Course Events: A Machine Learning Approach. European Journal of Population, 2006, 22, 37-65.	1.1	40
124	Machine learning and games. Machine Learning, 2006, 63, 211-215.	3.4	42
125	Modeling International Negotiation Statistical and Machine Learning Approaches. , 2006, , 227-250.		2
126	Link-Local Features for Hypertext Classification. Lecture Notes in Computer Science, 2006, , 51-64.	1.0	10

#	Article	IF	CITATIONS
127	ROC ?n? Rule Learning?Towards a Better Understanding of Covering Algorithms. Machine Learning, 2005, 58, 39-77.	3.4	180
128	From Local to Global Patterns: Evaluation Issues in Rule Learning Algorithms. Lecture Notes in Computer Science, 2005, , 20-38.	1.0	9
129	Web Mining. , 2005, , 899-920.		12
130	Learning Label Preferences: Ranking Error Versus Position Error. Lecture Notes in Computer Science, 2005, , 180-191.	1.0	4
131	An Analysis of Stopping and Filtering Criteria for Rule Learning. Lecture Notes in Computer Science, 2004, , 123-133.	1.0	6
132	Pairwise Preference Learning and Ranking. Lecture Notes in Computer Science, 2003, , 145-156.	1.0	118
133	Round robin ensembles. Intelligent Data Analysis, 2003, 7, 385-403.	0.4	33
134	Combining Pairwise Classifiers with Stacking. Lecture Notes in Computer Science, 2003, , 219-229.	1.0	18
135	On the Cultural Evolution of Age-at-Marriage Norms. Contributions To Economics, 2003, , 139-157.	0.2	11
136	User profiling for the melvil knowledge retrieval system. Applied Artificial Intelligence, 2002, 16, 243-281.	2.0	6
137	Hyperlink ensembles: a case study in hypertext classification. Information Fusion, 2002, 3, 299-312.	11.7	31
138	A Pathology of Bottom-Up Hill-Climbing in Inductive Rule Learning. Lecture Notes in Computer Science, 2002, , 263-277.	1.0	5
139	Pairwise Classification as an Ensemble Technique. Lecture Notes in Computer Science, 2002, , 97-110.	1.0	28
140	An Evaluation of Grading Classifiers. Lecture Notes in Computer Science, 2001, , 115-124.	1.0	71
141	SEARCHING FOR PATTERNS IN POLITICAL EVENT SEQUENCES: EXPERIMENTS WITH THE KEDS DATABASE. Cybernetics and Systems, 2000, 31, 649-668.	1.6	2
142	10.1162/153244302320884605. Applied Physics Letters, 2000, 1, .	1.5	126
143	Exploiting Structural Information for Text Classification on the WWW. Lecture Notes in Computer Science, 1999, , 487-497.	1.0	63
144	Separate-and-Conquer Rule Learning. Artificial Intelligence Review, 1999, 13, 3-54.	9.7	370

#	Article	IF	CITATIONS
145	Guest editorial: First-order knowledge discovery in databases. Applied Artificial Intelligence, 1998, 12, 345-361.	2.0	0
146	Knowledge discovery in international conflict databases. Applied Artificial Intelligence, 1997, 11, 91-118.	2.0	19
147	Pruning Algorithms for Rule Learning. Machine Learning, 1997, 27, 139-172.	3.4	92
148	Incremental Reduced Error Pruning. , 1994, , 70-77.		173
149	Tree-based dynamic classifier chains. Machine Learning, 0, , 1.	3.4	0