Ramin Yousefi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2972804/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	X-ray analysis of ZnO nanoparticles by Williamson–Hall and size–strain plot methods. Solid State Sciences, 2011, 13, 251-256.	1.5	1,869
2	Effects of annealing temperature on some structural and optical properties of ZnO nanoparticles prepared by a modified sol–gel combustion method. Ceramics International, 2011, 37, 393-398.	2.3	401
3	Sonochemical synthesis of hierarchical ZnO nanostructures. Ultrasonics Sonochemistry, 2013, 20, 395-400.	3.8	182
4	Synthesis and characterization of ZnO nanoparticles prepared in gelatin media. Materials Letters, 2011, 65, 70-73.	1.3	172
5	Starch-stabilized synthesis of ZnO nanopowders at low temperature and optical properties study. Advanced Powder Technology, 2013, 24, 618-624.	2.0	149
6	Enhanced visible-light photocatalytic activity of strontium-doped zinc oxide nanoparticles. Materials Science in Semiconductor Processing, 2015, 32, 152-159.	1.9	147
7	Optical and electrical properties of p-type Ag-doped ZnO nanostructures. Ceramics International, 2014, 40, 7957-7963.	2.3	140
8	Effects of graphene oxide concentration on optical properties of ZnO/RGO nanocomposites and their application to photocurrent generation. Journal of Applied Physics, 2014, 116, .	1.1	132
9	Synthesis and characterization of ZnO NPs/reduced graphene oxide nanocomposite prepared in gelatin medium as highly efficient photo-degradation of MB. Ceramics International, 2014, 40, 10217-10221.	2.3	131
10	Synthesis, magnetic properties and X-ray analysis of Zn0.97X0.03O nanoparticles (XÂ=ÂMn, Ni, and Co) using Scherrer and size–strain plot methods. Solid State Sciences, 2012, 14, 488-494.	1.5	128
11	One-pot sol–gel synthesis of reduced graphene oxide uniformly decorated zinc oxide nanoparticles in starch environment for highly efficient photodegradation of Methylene Blue. RSC Advances, 2015, 5, 21888-21896.	1.7	116
12	Optical and structural properties of X-doped (X=Mn, Mg, and Zn) PZT nanoparticles by Kramers–Kronig and size strain plot methods. Ceramics International, 2012, 38, 5683-5690.	2.3	103
13	Facile synthesis and X-ray peak broadening studies of Zn1â^'xMgxO nanoparticles. Ceramics International, 2012, 38, 2059-2064.	2.3	100
14	The effect of defect emissions on enhancement photocatalytic performance of ZnSe QDs and ZnSe/rGO nanocomposites. Applied Surface Science, 2018, 435, 886-893.	3.1	96
15	Highly efficient photo-degradation of methyl blue and band gap shift of SnS nanoparticles under different sonication frequencies. Materials Science in Semiconductor Processing, 2015, 32, 172-178.	1.9	92
16	XPS studies and photocurrent applications of alkali-metals-doped ZnO nanoparticles under visible illumination conditions. Physica E: Low-Dimensional Systems and Nanostructures, 2016, 79, 113-118.	1.3	90
17	Experimental and Theoretical Study of Enhanced Photocatalytic Activity of Mgâ€Doped ZnO NPs and ZnO/rGO Nanocomposites. Chemistry - an Asian Journal, 2018, 13, 194-203.	1.7	83
18	The effect of group-I elements on the structural and optical properties of ZnO nanoparticles. Ceramics International, 2013, 39, 1371-1377	2.3	80

#	Article	IF	CITATIONS
19	Synthesis and characterization of Co3O4 ultra-nanosheets and Co3O4 ultra-nanosheet-Ni(OH)2 as non-enzymatic electrochemical sensors for glucose detection. Materials Science and Engineering C, 2016, 59, 500-508.	3.8	78
20	Effect of S- and Sn-doping to the optical properties of ZnO nanobelts. Applied Surface Science, 2009, 255, 9376-9380.	3.1	76
21	Dependence of photoluminescence peaks and ZnO nanowires diameter grown on silicon substrates at different temperatures and orientations. Journal of Alloys and Compounds, 2009, 479, L11-L14.	2.8	72
22	Growth, X-ray peak broadening studies, and optical properties of Mg-doped ZnO nanoparticles. Materials Science in Semiconductor Processing, 2013, 16, 771-777.	1.9	71
23	Enhanced photocatalytic performance of ZnSe/PANI nanocomposites for degradation of organic and inorganic pollutants. Applied Surface Science, 2018, 462, 730-738.	3.1	70
24	SnS nanosheet films deposited via thermal evaporation: The effects of buffer layers on photovoltaic performance. Solar Energy Materials and Solar Cells, 2016, 154, 49-56.	3.0	67
25	Effects of annealing atmosphere and rGO concentration on the optical properties and enhanced photocatalytic performance of SnSe/rGO nanocomposites. Physical Chemistry Chemical Physics, 2017, 19, 18089-18098.	1.3	64
26	Improving the intrinsic properties of rGO sheets by S-doping and the effects of rGO improvements on the photocatalytic performance of Cu3Se2/rGO nanocomposites. Applied Surface Science, 2019, 466, 401-410.	3.1	64
27	Excellent photocatalytic performance of Zn(1â^'x)MgxO/rGO nanocomposites under natural sunlight irradiation and their photovoltaic and UV detector applications. Materials and Design, 2016, 107, 47-55.	3.3	62
28	Effects of Sn atoms on formation of ZnO nanorings. CrystEngComm, 2015, 17, 2698-2704.	1.3	55
29	Photocurrent application of Zn-doped CdS nanostructures grown by thermal evaporation method. Ceramics International, 2016, 42, 1891-1896.	2.3	54
30	The effects of annealing temperature on structural and optical properties of S-doped ZnO nanobelts. Solid State Sciences, 2010, 12, 252-256.	1.5	53
31	Growth and characterization of ZnO nanowires grown on the Si(111) and Si(100) substrates: Optical properties and biaxial stress of nanowires. Materials Science in Semiconductor Processing, 2011, 14, 170-174.	1.9	53
32	Effect of indium concentration on morphology and optical properties of In-doped ZnO nanostructures. Ceramics International, 2012, 38, 6295-6301.	2.3	53
33	Characterization and field emission properties of ZnMgO nanowires fabricated by thermal evaporation process. Solid State Sciences, 2010, 12, 1088-1093.	1.5	50
34	The effect of source temperature on morphological and optical properties of ZnO nanowires grown using a modified thermal evaporation set-up. Current Applied Physics, 2011, 11, 767-770.	1.1	49
35	Growth and characterization of Cl-doped ZnO hexagonal nanodisks. Journal of Solid State Chemistry, 2011, 184, 2678-2682.	1.4	48
36	A Comparative Study of the Properties of ZnO Nano/Microstructures Grown using Two Types of Thermal Evaporation Setâ€up Conditions. Chemical Vapor Deposition, 2012, 18, 215-220.	1.4	48

#	Article	IF	CITATIONS
37	The effect of tin sulfide quantum dots size on photocatalytic and photovoltaic performance. Materials Chemistry and Physics, 2017, 195, 187-194.	2.0	47
38	Ultrasonic synthesis of In-doped SnS nanoparticles and their physical properties. Solid State Sciences, 2018, 79, 30-37.	1.5	47
39	Optical and electrical properties of p-type Li-doped ZnO nanowires. Superlattices and Microstructures, 2013, 61, 91-96.	1.4	46
40	Effect of Al doping on the structural and optical properties of electrodeposited SnS thin films. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 1302-1308.	0.8	44
41	High performance of methanol gas sensing of ZnO/PAni nanocomposites synthesized under different magnetic field. Journal of Alloys and Compounds, 2019, 802, 335-344.	2.8	44
42	Effects of gold catalysts and thermal evaporation method modifications on the growth process of Zn1â°'Mg O nanowires. Journal of Solid State Chemistry, 2010, 183, 1733-1739.	1.4	43
43	High acetic acid sensing performance of Mg-doped ZnO/rGO nanocomposites. Ceramics International, 2019, 45, 7034-7043.	2.3	43
44	Investigation of indium oxide as a self-catalyst in ZnO/ZnInO heterostructure nanowires growth. Thin Solid Films, 2010, 518, 5971-5977.	0.8	42
45	Electrochemically synthesis and optoelectronic properties of Pb- and Zn-doped nanostructured SnSe films. Applied Surface Science, 2018, 443, 345-353.	3.1	42
46	Type-II p(SnSe)-n(g-C3N4) heterostructure as a fast visible-light photocatalytic material: Boosted by an efficient interfacial charge transfer of p-n heterojunction. Journal of Alloys and Compounds, 2020, 829, 154436.	2.8	42
47	Influence of lead concentration on morphology and optical properties of Pb-doped ZnO nanowires. Ceramics International, 2013, 39, 9115-9119.	2.3	41
48	S-doping effects on optical properties and highly enhanced photocatalytic performance of Cu3Se2 nanoparticles under solar-light irradiation. Ceramics International, 2017, 43, 14983-14988.	2.3	41
49	Photovoltaic and UV detector applications of ZnS/rGO nanocomposites synthesized by a green method. Ceramics International, 2016, 42, 14094-14099.	2.3	40
50	Synthesis and characterization of type-II p(CuxSey)/n(g-C3N4) heterojunction with enhanced visible-light photocatalytic performance for degradation of dye pollutants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 595, 124656.	2.3	39
51	Nanostructured SnS1â^'xTex thin films: Effect of Te concentration and physical properties. Journal of Alloys and Compounds, 2016, 681, 595-605.	2.8	38
52	Acetic acid sensing of Mg-doped ZnO thin films fabricated by the sol–gel method. Journal of Materials Science: Materials in Electronics, 2018, 29, 14679-14688.	1.1	38
53	Effect of chlorine ion concentration on morphology and optical properties of Cl-doped ZnO nanostructures. Ceramics International, 2012, 38, 5821-5825.	2.3	37
54	Synthesis and characterization of single crystal PbO nanoparticles in a gelatin medium. Ceramics International, 2014, 40, 11699-11703.	2.3	36

#	Article	IF	CITATIONS
55	Highly enhanced photocatalytic performance of Zn(1â^'x)MgxO/rGO nanostars under sunlight irradiation synthesized by one-pot refluxing method. Advanced Powder Technology, 2018, 29, 78-85.	2.0	36
56	Facile synthesis of different morphologies of Te-doped ZnO nanostructures. Ceramics International, 2014, 40, 7737-7743.	2.3	35
57	Enhanced photovoltaic performance of tin sulfide nanoparticles by indium doping. MRS Communications, 2016, 6, 421-428.	0.8	32
58	Excellent photocatalytic performance under visible-light irradiation of ZnS/rGO nanocomposites synthesized by a green method. Frontiers of Materials Science, 2016, 10, 385-393.	1.1	31
59	Effect of annealing temperature and graphene concentrations on photovoltaic and NIR-detector applications of PbS/rGO nanocomposites. Ceramics International, 2016, 42, 15209-15216.	2.3	31
60	Broad Spectral Response of Seâ€Đoped SnS Nanorods Synthesized through Electrodeposition. ChemElectroChem, 2017, 4, 1478-1486.	1.7	31
61	Controlled morphology of ZnSe nanostructures by varying Zn/Se molar ratio: the effects of different morphologies on optical properties and photocatalytic performance. CrystEngComm, 2018, 20, 4590-4599.	1.3	31
62	Surface characterization of Au–ZnO nanowire films. Ceramics International, 2012, 38, 6665-6670.	2.3	30
63	Graphene oxide electrocatalyst on MnO2 air cathode as an efficient electron pump for enhanced oxygen reduction in alkaline solution. Scientific Reports, 2015, 5, 9108.	1.6	30
64	Photocurrent applications of Zn (1â^'x) Cd x O/rGO nanocomposites. Ceramics International, 2016, 42, 7455-7461.	2.3	30
65	Optical, electrical, and photovoltaic properties of PbS thin films by anionic and cationic dopants. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	1.1	30
66	High solar-light photocatalytic activity of using Cu 3 Se 2 /rGO nanocomposites synthesized by a green co-precipitation method. Solid State Sciences, 2017, 73, 7-12.	1.5	30
67	Pb-doped Cu3Se2 nanosheets: Electrochemical synthesis, structural features and optoelectronic properties. Solar Energy, 2018, 171, 508-518.	2.9	30
68	Fabrication and characterization of ZnO and ZnMgO nanostructures grown using a ZnO/ZnMgO compound as the source material. Applied Surface Science, 2009, 256, 329-334.	3.1	28
69	Influence of growth conditions on the electrochemical synthesis of SnS thin films and their optical properties. International Journal of Minerals, Metallurgy and Materials, 2016, 23, 348-357.	2.4	28
70	An electrochemical sensor based on Pt/g-C3N4/polyaniline nanocomposite for detection of Hg2+. Advanced Powder Technology, 2020, 31, 3372-3380.	2.0	28
71	Auger and photoluminescence analysis of ZnO nanowires grown on AlN thin film. Applied Surface Science, 2009, 255, 6985-6988.	3.1	27
72	Optical properties of group-1-doped ZnO nanowires. Ceramics International, 2014, 40, 4327-4332.	2.3	27

#	Article	IF	CITATIONS
73	Electrochemical synthesis and physical properties of Sn-doped CdO nanostructures. Superlattices and Microstructures, 2016, 100, 988-996.	1.4	26
74	Improvement of gas-sensing performance of ZnO nanorods by group-I elements doping. Journal of Applied Physics, 2017, 122, .	1.1	26
75	Ultrasound-assisted electrodeposition of Cu3Se2 nanosheets and efficient solar cell performance. Journal of Alloys and Compounds, 2019, 780, 626-633.	2.8	26
76	Comparison of the photocatalytic performance of S-SnSe/GO and SnSe/S-GO nanocomposites for dye photodegradation. Materials Research Bulletin, 2021, 135, 111127.	2.7	26
77	Growth and optical properties of ZnO–In2O3 heterostructure nanowires. Ceramics International, 2013, 39, 5191-5196.	2.3	25
78	Examining the effect of Zn dopant on physical properties of nanostructured SnS thin film by using electrodeposition. Journal of Applied Electrochemistry, 2016, 46, 323-330.	1.5	25
79	High performance of visible-NIR broad spectral photocurrent application of monodisperse PbSe nanocubes decorated on rGO sheets. Journal of Applied Physics, 2018, 123, .	1.1	25
80	The role of the Se-rich and Se-poor conditions in the photocatalytic performance of ZnSe/rGO nanocomposites. Applied Surface Science, 2020, 513, 145819.	3.1	25
81	Synthesis and characterization of Pb-doped ZnO nanoparticles and their photocatalytic applications. Materials Research Innovations, 2016, 20, 121-127.	1.0	24
82	Photocurrent Properties of Undoped and Pb-Doped SnS Nanostructures Grown Using Electrodeposition Method. Journal of Electronic Materials, 2015, 44, 4734-4739.	1.0	23
83	The effects of S-doping concentration on the photocatalytic performance of SnSe/S-GO nanocomposites. Advanced Powder Technology, 2021, 32, 346-357.	2.0	23
84	Microwave-assisted solvothermal synthesis and optoelectronic properties of γ-MnS nanoparticles. Journal of Materials Science: Materials in Electronics, 2018, 29, 10976-10985.	1.1	21
85	Synthesis and characterization of PbS mesostructures as an IR detector grown by hydrogen-assisted thermal evaporation. Materials Science in Semiconductor Processing, 2014, 26, 704-709.	1.9	20
86	Effect of transition metal elements on the structural and optical properties of ZnO nanoparticles. Bulletin of Materials Science, 2016, 39, 719-724.	0.8	20
87	Microwave-assisted solvothermal synthesis and physical properties of Zn-doped MnS nanoparticles. Solid State Sciences, 2019, 93, 31-36.	1.5	20
88	Tuning crystal phase and morphology of copper selenide nanostructures and their visible-light photocatalytic applications to degrade organic pollutants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 586, 124196.	2.3	20
89	Enhanced solar cell performance of P3HT:PCBM by SnS nanoparticles. Solar Energy, 2020, 199, 872-884.	2.9	20
90	Improved Synthesis of Reduced Graphene Oxide-Titanium Dioxide Composite with Highly Exposed{001}Facets and Its Photoelectrochemical Response. International Journal of Photoenergy, 2014, 2014, 1-9.	1.4	19

#	Article	IF	CITATIONS
91	Impact of rGO on photocatalytic performance of Cd-doped ZnO nanostructures synthesized via a simple aqueous co-precipitation route. Materials Research Express, 2019, 6, 025051.	0.8	19
92	Heavy metal removal by using ZnO/organic and ZnO/inorganic nanocomposite heterostructures. International Journal of Environmental Analytical Chemistry, 2020, 100, 702-719.	1.8	19
93	Synthesis of Polypyrrole Coated Silver Nanostrip Bundles and Their Application for Detection of Hydrogen Peroxide. Journal of the Electrochemical Society, 2014, 161, H487-H492.	1.3	18
94	Effect of thickness on the optoelectronic properties of electrodeposited nanostructured SnS films. Optical and Quantum Electronics, 2018, 50, 1.	1.5	18
95	Electrochemical synthesis and surface characterization of hexagonal Cu–ZnO nano-funnel tube films. Ceramics International, 2013, 39, 3715-3720.	2.3	17
96	The capability of SnTe QDs as QDSCs working in the visible–NIR region and the effects of Eu-doping on improvement of solar cell parameters. Journal of Materials Science: Materials in Electronics, 2018, 29, 18989-18996.	1.1	17
97	Growth and characterization of ZnO (microdisks)/W18O49 (nanorods) heterostructures. Solid State Sciences, 2012, 14, 349-353.	1.5	16
98	Effect of hydrogen gas on the growth process of PbS nanorods grown by a CVD method. Current Applied Physics, 2014, 14, 1031-1035.	1.1	16
99	Electrodeposition of In-doped SnSe nanoparticles films: Correlation of physical characteristics with solar cell performance. Solid State Sciences, 2020, 108, 106388.	1.5	16
100	Influences of anionic and cationic dopants on the morphology and optical properties of PbS nanostructures. Chinese Physics B, 2014, 23, 108101.	0.7	15
101	Growth and characterization of ZnTe nanowires grown in a large scale by a CVD method. Materials Letters, 2016, 162, 195-198.	1.3	15
102	Large-scale and facile fabrication of PbSe nanostructures by selenization of a Pb sheet. Functional Materials Letters, 2015, 08, 1550063.	0.7	14
103	A simple method to fabricate an NIR detector by PbTe nanowires in a large scale. Materials Research Bulletin, 2016, 77, 131-137.	2.7	14
104	Photocurrent application of Cd-doped ZnTe nanowires grown in a large scale by a CVD method. Vacuum, 2016, 123, 131-135.	1.6	14
105	Large-scale and facial fabrication of PbS nanorods by sulfuration of a Pb sheet. Materials Science in Semiconductor Processing, 2014, 21, 98-103.	1.9	13
106	Zn-doped PbO nanoparticles (NPs)/fluorine-doped tin oxide (FTO) as photoanode for enhancement of visible-near-infrared (NIR) broad spectral photocurrent application of narrow bandgap nanostructures: SnSe NPs as a case study. Journal of Applied Physics, 2018, 124, .	1.1	13
107	Improvement visible-light photocatalytic performance of single-crystalline SnSe1±x NPs toward degradation of organic pollutants. Solid State Sciences, 2019, 98, 106044.	1.5	13
108	Influence of chemical routes on optical and field emission properties of Au–ZnO nanowire films. Vacuum, 2014, 101, 233-237.	1.6	12

#	Article	lF	CITATIONS
109	Effect of growth condition on structure and optical properties of hybrid Ag-CuO nanomaterials. Advanced Powder Technology, 2016, 27, 2196-2203.	2.0	12
110	Facile Synthesis of Porous-Structured Nickel Oxide Thin Film by Pulsed Laser Deposition. Journal of Nanomaterials, 2012, 2012, 1-4.	1.5	11
111	Optoelectronic properties of Zn-doped Cu3Se2 nanosheets for photovoltaic application. Ceramics International, 2020, 46, 21978-21988.	2.3	11
112	The effects of Sn:Te ratio on optical properties of SnTe NPs. Journal of Luminescence, 2018, 203, 481-485.	1.5	10
113	Simultaneous protonation/deprotonation mechanism in polyaniline-based devices as complementary resistive switches. Organic Electronics, 2020, 79, 105628.	1.4	10
114	Growth and Characterization of PbO Nanorods Grown using Facile Oxidation of Lead Sheet. Sains Malaysiana, 2015, 44, 291-294.	0.3	10
115	Enhancing photovoltaic performance of PbS/rGO nanocomposites: The role of buffer layer of ZnS/rGO nanocomposites. Ceramics International, 2017, 43, 128-132.	2.3	9
116	Study on the effects of the magneto assisted deposition on ammonia gas sensing properties of polyaniline. Journal of Materials Science: Materials in Electronics, 2019, 30, 10765-10775.	1.1	9
117	l-Clutamine-assisted synthesis of ZnO oatmeal-like/silver composites as an electrochemical sensor for Pb2+ detection. Analytical and Bioanalytical Chemistry, 2019, 411, 517-526.	1.9	9
118	Nanostructured FeS2 films: Influence of effective parameters on electrochemical deposition and characterization of physical properties. Ceramics International, 2021, 47, 21969-21969.	2.3	9
119	Sn–ZnO nanoneedles grown on Zn wire as a pointed field emitter and switching device. Materials Letters, 2013, 111, 181-184.	1.3	8
120	Photovoltaic and photodetector performance of metal telluride nanowires grown by a simple CVD method. Journal of Materials Science: Materials in Electronics, 2017, 28, 4475-4480.	1.1	8
121	Role of non-stoichiometric defects in optical properties of metal-selenide nanostructures. Journal of Luminescence, 2020, 223, 117211.	1.5	8
122	Correlation of Physical Features and the Photovoltaic Performance of P3HT:PCBM Solar Cells by Cu-Doped SnS Nanoparticles. Journal of Physical Chemistry C, 2021, 125, 15841-15852.	1.5	8
123	Tuning the size of PbSe nanocubes for solar-cell applications. Materials Letters, 2020, 268, 127590.	1.3	7
124	Nanosensors for gas sensing applications. , 2020, , 107-130.		7
125	Semiconductor/Graphene Nanocomposites: Synthesis, Characterization, and Applications. , 2018, , 23-43.		6
126	Electrodeposition of nanostructured FeS2 films: The effect of Sn concentrations on the optoelectronic performance. Solid State Sciences, 2021, 120, 106722.	1.5	6

#	Article	IF	CITATIONS
127	Electrodeposition of Cu–ZnO nanocomposites: Effect of growth conditions on morphologies and surface properties. Materials Science in Semiconductor Processing, 2014, 27, 507-514.	1.9	5
128	Investigation of the optoelectronic behavior of Pb-doped CdO nanostructures. Applied Nanoscience (Switzerland), 2018, 8, 937-948.	1.6	5
129	The Environmental Crisis and Nanotechnology. Micro and Nanosystems, 2022, 14, 188-190.	0.3	5
130	Synthesis and Characterization of Zinc/Polypyrrole Nanotube as a Protective Pigment in Organic Coatings. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 3353-3363.	1.1	4
131	Improvement of visible-near-infrared (NIR) broad spectral photocurrent application of PbSe mesostructures using tuning the morphology and optical properties. Materials Research Express, 2019, 6, 095016.	0.8	4
132	The Role of Ag/Al Electrodes in the Improvement of PEDOT:PSS/P3HT:PCBM Solar Cells Performance. IEEE Journal of Photovoltaics, 2020, 10, 1346-1352.	1.5	4
133	Effect of annealing process on the growth and surface properties of Au–ZnO nanowire films grown by chemical routes. Ceramics International, 2013, 39, 7577-7581.	2.3	3
134	PAni-based complementary resistive switches: the effects of Ag on physical properties and switching mechanism. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	1.1	3
135	Nanoarchitectonics of SnSe with the impacts of ultrasonic powers and ultraviolet radiations on physical and optoelectronic properties. Advanced Powder Technology, 2022, 33, 103517.	2.0	3
136	Enhanced visible-light photovoltaic and photocatalytic performances of SnSe1-xSx nanostructures. Surfaces and Interfaces, 2022, 30, 101916.	1.5	3
137	Effect of ultrasonic irradiation time on the physical and optoelectronic properties of SnSe nanorods. Surfaces and Interfaces, 2021, 27, 101433.	1.5	2
138	Cheap Nano-Adsorbents Based on Zno/Mineral Nanocomposites for Removal of Chloroform from Water Solution. Jundishapur Journal of Health Sciences, 2020, 12, .	0.1	2
139	Graphene-Metal-Organic Framework Modified Gas Sensor. Materials Horizons, 2020, , 117-142.	0.3	2
140	Characterization and Fabrication of ZnO Nanowires Grown on AlN Thin Film. , 2009, , .		0
141	Benzene Degradation by Free and Immobilized <i>Bacillus glycinifermantans</i> Strain GO-13T Using GO Sheets. Polish Journal of Environmental Studies, 2020, 29, 2783-2793.	0.6	0