Ulrich Prahl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2972761/publications.pdf

Version: 2024-02-01

393982 525886 27 986 19 27 h-index citations g-index papers 27 27 27 615 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	The TRIP Effect and Its Application in Cold Formable Sheet Steels. Steel Research International, 2017, 88, 1700218.	1.0	121
2	Macroscopic to nanoscopic in situ investigation on yielding mechanisms in ultrafine grained medium Mn steels: Role of the austenite-ferrite interface. Acta Materialia, 2019, 178, 10-25.	3.8	95
3	Medium-manganese steels processed by austenite-reverted-transformation annealing for automotive applications. Materials Science and Technology, 2017, 33, 1713-1727.	0.8	85
4	Phase boundary segregation-induced strengthening and discontinuous yielding in ultrafine-grained duplex medium-Mn steels. Acta Materialia, 2020, 200, 389-403.	3.8	70
5	Influence of microstructure and atomic-scale chemistry on the direct reduction of iron ore with hydrogen at 700°C. Acta Materialia, 2021, 212, 116933.	3.8	61
6	Sustainable steel through hydrogen plasma reduction of iron ore: Process, kinetics, microstructure, chemistry. Acta Materialia, 2021, 213, 116971.	3.8	46
7	On the hydrogen embrittlement behavior of nickel-based alloys: Alloys 718 and 725. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 792, 139785.	2.6	44
8	Hierarchical nature of hydrogen-based direct reduction of iron oxides. Scripta Materialia, 2022, 213, 114571.	2.6	43
9	Insight into hydrogen effect on a duplex medium-Mn steel revealed by in-situ nanoindentation test. International Journal of Hydrogen Energy, 2019, 44, 20545-20551.	3.8	37
10	Green steel at its crossroads: Hybrid hydrogen-based reduction of iron ores. Journal of Cleaner Production, 2022, 340, 130805.	4.6	36
11	Anisotropy and strain rate effects on the failure behavior of TWIP steel: A multiscale experimental study. International Journal of Plasticity, 2019, 115, 178-199.	4.1	34
12	Effect of equal-channel angular pressing on microstructural evolution, mechanical property and biodegradability of an ultrafine-grained zinc alloy. Materials Science & Digineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 824, 141857.	2.6	34
13	Investigation of the Microstructure Evolution in a Fe-17Mn-1.5Al-0.3C Steel via In Situ Synchrotron X-ray Diffraction during a Tensile Test. Materials, 2017, 10, 1129.	1.3	32
14	Influence of Intercritical Annealing Temperature on Microstructure and Mechanical Properties of a Cold-Rolled Medium-Mn Steel. Metals, 2018, 8, 357.	1.0	32
15	Materials and Processes for the Third-generation Advanced High-strength Steels. BHM-Zeitschrift Fuer Rohstoffe Geotechnik Metallurgie Werkstoffe Maschinen-Und Anlagentechnik, 2019, 164, 466-474.	0.4	30
16	Precipitation behavior and austenite stability of Nb or Nb–Mo micro-alloyed warm-rolled medium-Mn steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 766, 138371.	2.6	27
17	Recrystallization behavior in a low-density high-Mn high-Al austenitic steel undergone thin strip casting process. Materials Science & Description (2018, 733, 87-97). Microstructure and Processing, 2018, 733, 87-97.	2.6	26
18	The Effect of Bake-Hardening Parameters on the Mechanical Properties of Dual-Phase Steels. Steel Research International, 2016, 87, 1559-1565.	1.0	25

#	Article	IF	Citations
19	Chemo-mechanical phase-field modeling of iron oxide reduction with hydrogen. Acta Materialia, 2022, 231, 117899.	3.8	19
20	Strain Hardening, Damage and Fracture Behavior of Al-Added High Mn TWIP Steels. Metals, 2019, 9, 367.	1.0	16
21	Influence of Microstructural Morphology on Hydrogen Embrittlement in a Medium-Mn Steel Fe-12Mn-3Al-0.05C. Metals, 2019, 9, 929.	1.0	13
22	Evaluation of hydrogen effect on the fatigue crack growth behavior of medium-Mn steels via in-situ hydrogen plasma charging in an environmental scanning electron microscope. Journal of Materials Science and Technology, 2021, 85, 30-43.	5.6	13
23	Strain Aging Behavior of an Austenitic Highâ€Mn Steel. Steel Research International, 2018, 89, 1700515.	1.0	12
24	Revealing tribo–oxidation mechanisms of the copper–WC system under high tribological loading. Scripta Materialia, 2021, 204, 114142.	2.6	11
25	Mechanism-controlled thermomechanical treatment of high manganese steels. Materials Science & Sc	2.6	10
26	Multiphaseâ€Field Simulation of Cementite Precipitation during Isothermal Lower Bainitic Transformation. Steel Research International, 2018, 89, 1800028.	1.0	9
27	Multiphase-field simulation of austenite reversion in medium-Mn steels. International Journal of Minerals, Metallurgy and Materials, 2021, 28, 847-853.	2.4	5