
Erica Ollmann Saphire

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2972738/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19 Virus. Cell, 2020, 182, 812-827.e19.	13.5	3,551
2	Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection. Science, 2021, 371, .	6.0	2,268
3	Antigen-Specific Adaptive Immunity to SARS-CoV-2 in Acute COVID-19 and Associations with Age and Disease Severity. Cell, 2020, 183, 996-1012.e19.	13.5	1,494
4	Crystal Structure of a Neutralizing Human IgG Against HIV-1: A Template for Vaccine Design. Science, 2001, 293, 1155-1159.	6.0	870
5	Broadly Neutralizing Antibodies Targeted to the Membrane-Proximal External Region of Human Immunodeficiency Virus Type 1 Glycoprotein gp41. Journal of Virology, 2001, 75, 10892-10905.	1.5	734
6	The Broadly Neutralizing Anti-Human Immunodeficiency Virus Type 1 Antibody 2G12 Recognizes a Cluster of α1→2 Mannose Residues on the Outer Face of gp120. Journal of Virology, 2002, 76, 7306-7321.	1.5	664
7	Structure of the Ebola virus glycoprotein bound to an antibody from a human survivor. Nature, 2008, 454, 177-182.	13.7	638
8	Complement Is Activated by IgG Hexamers Assembled at the Cell Surface. Science, 2014, 343, 1260-1263.	6.0	602
9	Ebola Virus VP35 Protein Binds Double-Stranded RNA and Inhibits Alpha/Beta Interferon Production Induced by RIG-I Signaling. Journal of Virology, 2006, 80, 5168-5178.	1.5	405
10	Contrasting IgG Structures Reveal Extreme Asymmetry and Flexibility. Journal of Molecular Biology, 2002, 319, 9-18.	2.0	246
11	Fine Mapping of the Interaction of Neutralizing and Nonneutralizing Monoclonal Antibodies with the CD4 Binding Site of Human Immunodeficiency Virus Type 1 gp120. Journal of Virology, 2003, 77, 642-658.	1.5	237
12	Structure of the Lassa virus nucleoprotein reveals a dsRNA-specific 3′ to 5′ exonuclease activity essential for immune suppression. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 2396-2401.	3.3	235
13	<i>Ebolavirus</i> glycoprotein structure and mechanism of entry. Future Virology, 2009, 4, 621-635.	0.9	230
14	Defining variant-resistant epitopes targeted by SARS-CoV-2 antibodies: A global consortium study. Science, 2021, 374, 472-478.	6.0	228
15	GP120: Biologic Aspects of Structural Features. Annual Review of Immunology, 2001, 19, 253-274.	9.5	226
16	Structural Rearrangement of Ebola Virus VP40 Begets Multiple Functions in the Virus Life Cycle. Cell, 2013, 154, 763-774.	13.5	201
17	Isolation of potent neutralizing antibodies from a survivor of the 2014 Ebola virus outbreak. Science, 2016, 351, 1078-1083.	6.0	194
18	A Role for Fc Function in Therapeutic Monoclonal Antibody-Mediated Protection against Ebola Virus. Cell Host and Microbe, 2018, 24, 221-233.e5.	5.1	182

#	Article	IF	CITATIONS
19	Structures of protective antibodies reveal sites of vulnerability on Ebola virus. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17182-17187.	3.3	173
20	Systematic Analysis of Monoclonal Antibodies against Ebola Virus GP Defines Features that Contribute to Protection. Cell, 2018, 174, 938-952.e13.	13.5	173
21	Lassa Fever in Post-Conflict Sierra Leone. PLoS Neglected Tropical Diseases, 2014, 8, e2748.	1.3	172
22	Structural basis for antibody-mediated neutralization of Lassa virus. Science, 2017, 356, 923-928.	6.0	170
23	Cross-Reactive and Potent Neutralizing Antibody Responses in Human Survivors of Natural Ebolavirus Infection. Cell, 2016, 164, 392-405.	13.5	160
24	Most neutralizing human monoclonal antibodies target novel epitopes requiring both Lassa virus glycoprotein subunits. Nature Communications, 2016, 7, 11544.	5.8	148
25	SARS-CoV-2 infection generates tissue-localized immunological memory in humans. Science Immunology, 2021, 6, eabl9105.	5.6	147
26	Cathepsin Cleavage Potentiates the Ebola Virus Glycoprotein To Undergo a Subsequent Fusion-Relevant Conformational Change. Journal of Virology, 2012, 86, 364-372.	1.5	137
27	Mechanism of Human Antibody-Mediated Neutralization of Marburg Virus. Cell, 2015, 160, 893-903.	13.5	130
28	The Ebola Virus Interferon Antagonist VP24 Directly Binds STAT1 and Has a Novel, Pyramidal Fold. PLoS Pathogens, 2012, 8, e1002550.	2.1	128
29	Antibody-mediated protection against Ebola virus. Nature Immunology, 2018, 19, 1169-1178.	7.0	127
30	<i>Ebolavirus</i> VP35 uses a bimodal strategy to bind dsRNA for innate immune suppression. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 314-319.	3.3	124
31	Assembly of the Ebola Virus Nucleoprotein from a Chaperoned VP35 Complex. Cell Reports, 2015, 12, 140-149.	2.9	117
32	A shared structural solution for neutralizing ebolaviruses. Nature Structural and Molecular Biology, 2011, 18, 1424-1427.	3.6	113
33	Crystal structure of the Lassa virus nucleoprotein–RNA complex reveals a gating mechanism for RNA binding. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 19365-19370.	3.3	113
34	Structural Basis for Marburg Virus Neutralization by a Cross-Reactive Human Antibody. Cell, 2015, 160, 904-912.	13.5	110
35	Fab and Fc contribute to maximal protection against SARS-CoV-2 following NVX-CoV2373 subunit vaccine with Matrix-M vaccination. Cell Reports Medicine, 2021, 2, 100405.	3.3	110
36	A "Trojan horse―bispecific-antibody strategy for broad protection against ebolaviruses. Science, 2016, 354, 350-354.	6.0	101

#	Article	IF	CITATIONS
37	Molecular Features of the Broadly Neutralizing Immunoglobulin G1 b12 Required for Recognition of Human Immunodeficiency Virus Type 1 gp120. Journal of Virology, 2003, 77, 5863-5876.	1.5	100
38	mRNA-1273 and BNT162b2 COVID-19 vaccines elicit antibodies with differences in Fc-mediated effector functions. Science Translational Medicine, 2022, 14, eabm2311.	5.8	100
39	Virus nomenclature below the species level: a standardized nomenclature for natural variants of viruses assigned to the family Filoviridae. Archives of Virology, 2013, 158, 301-311.	0.9	99
40	Structures of Ebola virus GP and sGP in complex with therapeutic antibodies. Nature Microbiology, 2016, 1, 16128.	5.9	92
41	Pan-ebolavirus and Pan-filovirus Mouse Monoclonal Antibodies: Protection against Ebola and Sudan Viruses. Journal of Virology, 2016, 90, 266-278.	1.5	92
42	An intranasal vaccine durably protects against SARS-CoV-2 variants in mice. Cell Reports, 2021, 36, 109452.	2.9	90
43	Host-Primed Ebola Virus GP Exposes a Hydrophobic NPC1 Receptor-Binding Pocket, Revealing a Target for Broadly Neutralizing Antibodies. MBio, 2016, 7, e02154-15.	1.8	86
44	Discussions and decisions of the 2012–2014 International Committee on Taxonomy of Viruses (ICTV) Filoviridae Study Group, January 2012–June 2013. Archives of Virology, 2014, 159, 821-830.	0.9	85
45	Antibody Treatment of Ebola and Sudan Virus Infection via a Uniquely Exposed Epitope within the Glycoprotein Receptor-Binding Site. Cell Reports, 2016, 15, 1514-1526.	2.9	80
46	Lifted Up from Lockdown. Cell, 2020, 183, 1-3.	13.5	79
47	Two-mAb cocktail protects macaques against the Makona variant of Ebola virus. Science Translational Medicine, 2016, 8, 329ra33.	5.8	78
48	A Vaccine against Ebola Virus. Cell, 2020, 181, 6.	13.5	73
49	Analysis of a Therapeutic Antibody Cocktail Reveals Determinants for Cooperative and Broad Ebolavirus Neutralization. Immunity, 2020, 52, 388-403.e12.	6.6	71
50	Marburg Virus VP35 Can Both Fully Coat the Backbone and Cap the Ends of dsRNA for Interferon Antagonism. PLoS Pathogens, 2012, 8, e1002916.	2.1	68
51	Broadly neutralizing antibodies from human survivors target a conserved site in the Ebola virus glycoprotein HR2–MPER region. Nature Microbiology, 2018, 3, 670-677.	5.9	68
52	Structure of a High-affinity "Mimotope―Peptide Bound to HIV-1-neutralizing Antibody b12 Explains its Inability to Elicit gp120 Cross-reactive Antibodies. Journal of Molecular Biology, 2007, 369, 696-709.	2.0	65
53	Crystal structure of the prefusion surface glycoprotein of the prototypic arenavirus LCMV. Nature Structural and Molecular Biology, 2016, 23, 513-521.	3.6	65
54	The Carbohydrate Epitope of the Neutralizing Anti-HIV-1 Antibody 2G12. Advances in Experimental Medicine and Biology, 2003, 535, 205-218.	0.8	65

ERICA OLLMANN SAPHIRE

#	Article	IF	CITATIONS
55	Ebola Virus Glycoprotein Needs an Additional Trigger, beyond Proteolytic Priming for Membrane Fusion. PLoS Neglected Tropical Diseases, 2011, 5, e1395.	1.3	64
56	Structural Basis for Differential Neutralization of Ebolaviruses. Viruses, 2012, 4, 447-470.	1.5	63
57	Crystal Structure of the Nipah Virus Phosphoprotein Tetramerization Domain. Journal of Virology, 2014, 88, 758-762.	1.5	63
58	Neutralizing ebolavirus: structural insights into the envelope glycoprotein and antibodies targeted against it. Current Opinion in Structural Biology, 2009, 19, 408-417.	2.6	62
59	Multifunctional Pan-ebolavirus Antibody Recognizes a Site of Broad Vulnerability on the Ebolavirus Glycoprotein. Immunity, 2018, 49, 363-374.e10.	6.6	61
60	The Ebola Virus VP30-NP Interaction Is a Regulator of Viral RNA Synthesis. PLoS Pathogens, 2016, 12, e1005937.	2.1	61
61	Virus nomenclature below the species level: a standardized nomenclature for filovirus strains and variants rescued from cDNA. Archives of Virology, 2014, 159, 1229-37.	0.9	59
62	Stopping pandemics before they start: Lessons learned from SARS-CoV-2. Science, 2022, 375, 1133-1139.	6.0	58
63	Structural Basis for the dsRNA Specificity of the Lassa Virus NP Exonuclease. PLoS ONE, 2012, 7, e44211.	1.1	54
64	Virus nomenclature below the species level: a standardized nomenclature for laboratory animal-adapted strains and variants of viruses assigned to the family Filoviridae. Archives of Virology, 2013, 158, 1425-1432.	0.9	54
65	Complex of a Protective Antibody with Its Ebola Virus GP Peptide Epitope: Unusual Features of a Vλx Light Chain. Journal of Molecular Biology, 2008, 375, 202-216.	2.0	50
66	Filovirus RefSeq Entries: Evaluation and Selection of Filovirus Type Variants, Type Sequences, and Names. Viruses, 2014, 6, 3663-3682.	1.5	49
67	Recurring conformation of the human immunodeficiency virus type 1 gp120 V3 loop. Virology, 2003, 315, 159-173.	1.1	48
68	An efficient platform for screening expression and crystallization of glycoproteins produced in human cells. Nature Protocols, 2009, 4, 592-604.	5.5	46
69	Structure of an Antibody in Complex with Its Mucin Domain Linear Epitope That Is Protective against Ebola Virus. Journal of Virology, 2012, 86, 2809-2816.	1.5	46
70	gp41: HIV's shy protein. Nature Medicine, 2004, 10, 133-134.	15.2	44
71	Ebolavirus VP35 Coats the Backbone of Double-Stranded RNA for Interferon Antagonism. Journal of Virology, 2013, 87, 10385-10388.	1.5	44
72	Non-neutralizing Antibodies from a Marburg Infection Survivor Mediate Protection by Fc-Effector Functions and by Enhancing Efficacy of Other Antibodies. Cell Host and Microbe, 2020, 27, 976-991.e11.	5.1	43

#	Article	IF	CITATIONS
73	Crystallization and preliminary structure determination of an intact human immunoglobulin, b12: an antibody that broadly neutralizes primary isolates of HIV-1. Acta Crystallographica Section D: Biological Crystallography, 2001, 57, 168-171.	2.5	41
74	The ebolavirus VP24 interferon antagonist. Virulence, 2012, 3, 440-445.	1.8	41
75	Crystal Structure of the Marburg Virus VP35 Oligomerization Domain. Journal of Virology, 2017, 91, .	1.5	41
76	Ebola and Marburg virus matrix layers are locally ordered assemblies of VP40 dimers. ELife, 2020, 9, .	2.8	41
77	The Marburgvirus-Neutralizing Human Monoclonal Antibody MR191 Targets a Conserved Site to Block Virus Receptor Binding. Cell Host and Microbe, 2018, 23, 101-109.e4.	5.1	40
78	Field validation of recombinant antigen immunoassays for diagnosis of Lassa fever. Scientific Reports, 2018, 8, 5939.	1.6	39
79	Antibodies to the Glycoprotein GP2 Subunit Cross-React between Old and New World Arenaviruses. MSphere, 2018, 3, .	1.3	39
80	Convergent Structures Illuminate Features for Germline Antibody Binding and Pan-Lassa Virus Neutralization. Cell, 2019, 178, 1004-1015.e14.	13.5	39
81	A cationic, C-terminal patch and structural rearrangements in Ebola virus matrix VP40 protein control its interactions with phosphatidylserine. Journal of Biological Chemistry, 2018, 293, 3335-3349.	1.6	38
82	InÂVivo Delivery of Synthetic Human DNA-Encoded Monoclonal Antibodies Protect against Ebolavirus Infection in a Mouse Model. Cell Reports, 2018, 25, 1982-1993.e4.	2.9	38
83	Protective mAbs and Cross-Reactive mAbs Raised by Immunization with Engineered Marburg Virus GPs. PLoS Pathogens, 2015, 11, e1005016.	2.1	36
84	Analytical Validation of the ReEBOV Antigen Rapid Test for Point-of-Care Diagnosis of Ebola Virus Infection. Journal of Infectious Diseases, 2016, 214, S210-S217.	1.9	35
85	An Outbreak of Ebola Virus Disease in the Lassa Fever Zone. Journal of Infectious Diseases, 2016, 214, S110-S121.	1.9	34
86	Structural Basis of Pan-Ebolavirus Neutralization by a Human Antibody against a Conserved, yet Cryptic Epitope. MBio, 2018, 9, .	1.8	34
87	Lassa virus glycoprotein: stopping a moving target. Current Opinion in Virology, 2018, 31, 52-58.	2.6	34
88	A Fc engineering approach to define functional humoral correlates of immunity against Ebola virus. Immunity, 2021, 54, 815-828.e5.	6.6	34
89	Multiple Circulating Infections Can Mimic the Early Stages of Viral Hemorrhagic Fevers and Possible Human Exposure to Filoviruses in Sierra Leone Prior to the 2014 Outbreak. Viral Immunology, 2015, 28, 19-31.	0.6	33
90	Crystal Structure of Marburg Virus VP40 Reveals a Broad, Basic Patch for Matrix Assembly and a Requirement of the N-Terminal Domain for Immunosuppression. Journal of Virology, 2016, 90, 1839-1848.	1.5	33

#	Article	IF	CITATIONS
91	Crystal Structure of an Intact Human IgG: Antibody Asymmetry, Flexibility, and a Guide for HIV-1 Vaccine Design. Advances in Experimental Medicine and Biology, 2003, 535, 55-66.	0.8	32
92	An update on the use of antibodies against the filoviruses. Immunotherapy, 2013, 5, 1221-1233.	1.0	32
93	SnapShot: Enveloped Virus Entry. Cell, 2020, 182, 786-786.e1.	13.5	32
94	Structural insights into RNA encapsidation and helical assembly of the Toscana virus nucleoprotein. Nucleic Acids Research, 2014, 42, 6025-6037.	6.5	30
95	Development of Prototype Filovirus Recombinant Antigen Immunoassays. Journal of Infectious Diseases, 2015, 212, S359-S367.	1.9	30
96	Structural basis of broad ebolavirus neutralization by a human survivor antibody. Nature Structural and Molecular Biology, 2019, 26, 204-212.	3.6	30
97	Antibody therapy for Lassa fever. Current Opinion in Virology, 2019, 37, 97-104.	2.6	28
98	Spiking Pandemic Potential: Structural and Immunological Aspects of SARS-CoV-2. Trends in Microbiology, 2020, 28, 605-618.	3.5	28
99	Techniques and tactics used in determining the structure of the trimeric <i>ebolavirus</i> glycoprotein. Acta Crystallographica Section D: Biological Crystallography, 2009, 65, 1162-1180.	2.5	26
100	Hiding the evidence: two strategies for innate immune evasion by hemorrhagic fever viruses. Current Opinion in Virology, 2012, 2, 151-156.	2.6	26
101	Two Synthetic Antibodies that Recognize and Neutralize Distinct Proteolytic Forms of the Ebola Virus Envelope Glycoprotein. ChemBioChem, 2012, 13, 2549-2557.	1.3	26
102	Crystal Structure of the Oligomeric Form of Lassa Virus Matrix Protein Z. Journal of Virology, 2016, 90, 4556-4562.	1.5	26
103	Asymmetric and non-stoichiometric glycoprotein recognition by two distinct antibodies results in broad protection against ebolaviruses. Cell, 2022, 185, 995-1007.e18.	13.5	26
104	Crystal Structure of Marburg Virus VP24. Journal of Virology, 2014, 88, 5859-5863.	1.5	24
105	Cross-reactive neutralizing human survivor monoclonal antibody BDBV223 targets the ebolavirus stalk. Nature Communications, 2019, 10, 1788.	5.8	24
106	Ebola vaccine–induced protection in nonhuman primates correlates with antibody specificity and Fc-mediated effects. Science Translational Medicine, 2021, 13, .	5.8	22
107	Filovirus Structural Biology: The Molecules in the Machine. Current Topics in Microbiology and Immunology, 2017, 411, 381-417.	0.7	21
108	Feverish Quest for Ebola Immunotherapy: Straight or Cocktail?. Trends in Microbiology, 2016, 24, 684-686.	3.5	20

ERICA OLLMANN SAPHIRE

#	Article	IF	CITATIONS
109	Structural biology in the fight against COVID-19. Nature Structural and Molecular Biology, 2021, 28, 2-7.	3.6	20
110	Oxidation-sensitive polymersomes as vaccine nanocarriers enhance humoral responses against Lassa virus envelope glycoprotein. Virology, 2017, 512, 161-171.	1.1	19
111	Structural Characterization of Pan-Ebolavirus Antibody 6D6 Targeting the Fusion Peptide of the Surface Glycoprotein. Journal of Infectious Diseases, 2019, 219, 415-419.	1.9	19
112	Achieving cross-reactivity with pan-ebolavirus antibodies. Current Opinion in Virology, 2019, 34, 140-148.	2.6	18
113	Structure of the LCMV nucleoprotein provides a template for understanding arenavirus replication and immunosuppression. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 1764-1769.	2.5	17
114	Diverse Morphology and Structural Features of Old and New World Hantaviruses. Viruses, 2019, 11, 862.	1.5	17
115	Cryo-EM structure of the Ebola virus nucleoprotein–RNA complex. Acta Crystallographica Section F, Structural Biology Communications, 2019, 75, 340-347.	0.4	17
116	Delineating the mechanism of anti-Lassa virus GPC-A neutralizing antibodies. Cell Reports, 2022, 39, 110841.	2.9	17
117	The structural basis for filovirus neutralization by monoclonal antibodies. Current Opinion in Immunology, 2018, 53, 196-202.	2.4	16
118	Pan-Filovirus Serum Neutralizing Antibodies in a Subset of Congolese Ebolavirus Infection Survivors. Journal of Infectious Diseases, 2018, 218, 1929-1936.	1.9	16
119	Evidence for distinct mechanisms of small molecule inhibitors of filovirus entry. PLoS Pathogens, 2021, 17, e1009312.	2.1	16
120	Inducing broad-based immunity against viruses with pandemic potential. Immunity, 2022, 55, 738-748.	6.6	16
121	Structure of the rabies virus glycoprotein trimer bound to a prefusion-specific neutralizing antibody. Science Advances, 2022, 8, .	4.7	16
122	A circular mRNA vaccine prototype producing VFLIP-X spike confers a broad neutralization of SARS-CoV-2 variants by mouse sera. Antiviral Research, 2022, 204, 105370.	1.9	16
123	A Conserved Basic Patch and Central Kink in the Nipah Virus Phosphoprotein Multimerization Domain Are Essential for Polymerase Function. Structure, 2019, 27, 660-668.e4.	1.6	15
124	Early Human B Cell Response to Ebola Virus in Four U.S. Survivors of Infection. Journal of Virology, 2019, 93, .	1.5	15
125	Antibodies from Sierra Leonean and Nigerian Lassa fever survivors cross-react with recombinant proteins representing Lassa viruses of divergent lineages. Scientific Reports, 2020, 10, 16030.	1.6	15
126	Rapid discovery of diverse neutralizing SARS-CoV-2 antibodies from large-scale synthetic phage libraries. MAbs, 2022, 14, 2002236.	2.6	14

#	Article	IF	CITATIONS
127	Cellular mRNA triggers structural transformation of Ebola virus matrix protein VP40 to its essential regulatory form. Cell Reports, 2021, 35, 108986.	2.9	12
128	CD164 is a host factor for lymphocytic choriomeningitis virus entry. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2119676119.	3.3	12
129	Neutralizing Antibodies against Lassa Virus Lineage I. MBio, 2022, 13, .	1.8	12
130	Structure of theReston ebolavirusVP30 C-terminal domain. Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 457-460.	0.4	11
131	Reporter Assays for Ebola Virus Nucleoprotein Oligomerization, Virion-Like Particle Budding, and Minigenome Activity Reveal the Importance of Nucleoprotein Amino Acid Position 111. Viruses, 2020, 12, 105.	1.5	9
132	Listening for viral infection. Nature Biotechnology, 2001, 19, 823-824.	9.4	8
133	Measles virus fusion shifts into gear. Nature Structural and Molecular Biology, 2011, 18, 115-116.	3.6	8
134	More than Meets the Eye: Hidden Structures in the Proteome. Annual Review of Virology, 2016, 3, 373-386.	3.0	8
135	Antibody Repertoires to the Same Ebola Vaccine Antigen Are Differentially Affected by Vaccine Vectors. Cell Reports, 2018, 24, 1816-1829.	2.9	8
136	Proximity interactome analysis of Lassa polymerase reveals eRF3a/GSPT1 as a druggable target for host-directed antivirals. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	8
137	High-resolution Crystal Structure of Dimeric VP40 FromSudan ebolavirus. Journal of Infectious Diseases, 2015, 212, S167-S171.	1.9	7
138	Sudan Ebolavirus VP35-NP Crystal Structure Reveals a Potential Target for Pan-Filovirus Treatment. MBio, 2019, 10, .	1.8	7
139	A glimpse into immune responses evolving against Ebola virus. Nature Medicine, 2019, 25, 1470-1471.	15.2	7
140	Development and Structural Analysis of Antibody Therapeutics for Filoviruses. Pathogens, 2022, 11, 374.	1.2	7
141	Functional interactomes of the Ebola virus polymerase identified by proximity proteomics in the context of viral replication. Cell Reports, 2022, 38, 110544.	2.9	7
142	Role of Non-local Interactions between CDR Loops in Binding Affinity of MR78 Antibody to Marburg Virus Glycoprotein. Structure, 2017, 25, 1820-1828.e2.	1.6	6
143	Prominent Neutralizing Antibody Response Targeting the Ebolavirus Glycoprotein Subunit Interface Elicited by Immunization. Journal of Virology, 2021, 95, .	1.5	6
144	Pan-ebolavirus serology study of healthcare workers in the Mbandaka Health Region, Democratic Republic of the Congo. PLoS Neglected Tropical Diseases, 2022, 16, e0010167.	1.3	6

ERICA OLLMANN SAPHIRE

#	Article	IF	CITATIONS
145	Potent Antibody Protection against an Emerging Alphavirus Threat. Cell, 2015, 163, 1053-1054.	13.5	5
146	New Advances in the Effort against Ebola. Cell Host and Microbe, 2015, 17, 545-547.	5.1	4
147	Swift antibodies to counter emerging viruses. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10082-10083.	3.3	4
148	Proteo-Genomic Analysis Identifies Two Major Sites of Vulnerability on Ebolavirus Glycoprotein for Neutralizing Antibodies in Convalescent Human Plasma. Frontiers in Immunology, 2021, 12, 706757.	2.2	4
149	How to turn competitors into collaborators. Nature, 2017, 541, 283-285.	13.7	3
150	Analysis of Oligomeric and Glycosylated Proteins by Size-Exclusion Chromatography Coupled with Multiangle Light Scattering. Methods in Molecular Biology, 2021, 2271, 343-359.	0.4	1
151	Enhanced IgG Hexamerization Mediates Efficient C1q Docking and Complement-Dependent Cytotoxicity; Preclinical Proof Of Concept On Primary CLL and Burkitt Lymphoma. Blood, 2013, 122, 375-375.	0.6	1
152	Editorial overview. Current Opinion in Virology, 2012, 2, 157-159.	2.6	0
153	Novel attempts launched toward universal Sarbecovirus vaccine. Cell Research, 2021, 31, 1226-1227.	5.7	Ο
154	Functional Studies of Ebola Virus Matrix Protein VP40. FASEB Journal, 2015, 29, 886.3.	0.2	0
155	Single Amino Acid Substitutions Dramatically Shift Equilibria of Physiologically Relevant Alternate Protein Assemblies. FASEB Journal, 2019, 33, 779.20.	0.2	Ο
156	A Manhattan Project against COVID. FASEB Journal, 2022, 36, e22117.	0.2	0
157	Structure-based drug design. IDrugs: the Investigational Drugs Journal, 2002, 5, 658-61.	0.7	0