
## **Chang-Sung Seok**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2972374/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Thermal stress analysis for a disk brake of railway vehicles with consideration of the pressure<br>distribution on a frictional surface. Materials Science & Engineering A: Structural Materials:<br>Properties, Microstructure and Processing, 2008, 483-484, 456-459. | 2.6 | 63        |
| 2  | Failure mechanisms of coin-type plasma-sprayed thermal barrier coatings with thermal fatigue.<br>Surface and Coatings Technology, 2010, 205, S451-S458.                                                                                                                 | 2.2 | 40        |
| 3  | Study on the Aging Behavior of Natural Rubber/Butadiene Rubber (NR/BR) Blends Using a Parallel<br>Spring Model. Polymers, 2018, 10, 658.                                                                                                                                | 2.0 | 36        |
| 4  | Evaluation for residual strength and fatigue characteristics after impact in CFRP composites.<br>Composite Structures, 2013, 105, 58-65.                                                                                                                                | 3.1 | 29        |
| 5  | A study on thermo mechanical fatigue life prediction of Ni-base superalloy. International Journal of<br>Fatigue, 2014, 62, 62-66.                                                                                                                                       | 2.8 | 26        |
| 6  | A Study on the Modified Arrhenius Equation Using the Oxygen Permeation Block Model of Crosslink<br>Structure. Polymers, 2019, 11, 136.                                                                                                                                  | 2.0 | 25        |
| 7  | Evaluation of fracture toughness of nuclear piping using real pipe and tensile compact pipe specimens.<br>Nuclear Engineering and Design, 2013, 259, 198-204.                                                                                                           | 0.8 | 23        |
| 8  | Prediction of post-impact residual strength and fatigue characteristics after impact of CFRP composite structures. Composites Part B: Engineering, 2014, 61, 300-306.                                                                                                   | 5.9 | 22        |
| 9  | The prediction methodology for tire's high speed durability regulation test using a finite element<br>method. International Journal of Fatigue, 2019, 118, 77-86.                                                                                                       | 2.8 | 20        |
| 10 | Estimation of spallation life of thermal barrier coating of gas turbine blade by thermal fatigue test.<br>Surface and Coatings Technology, 2011, 205, S157-S160.                                                                                                        | 2.2 | 19        |
| 11 | Prediction of residual strength of CFRP after impact. Composites Part B: Engineering, 2013, 54, 28-33.                                                                                                                                                                  | 5.9 | 19        |
| 12 | Bending fatigue life evaluation of Cu-Mg alloy contact wire. International Journal of Precision<br>Engineering and Manufacturing, 2014, 15, 1331-1335.                                                                                                                  | 1.1 | 19        |
| 13 | Prediction of the static fracture strength of hole notched plain weave CFRP composites. Composites<br>Science and Technology, 2011, 71, 1671-1676.                                                                                                                      | 3.8 | 18        |
| 14 | Effect of high-temperature degradation on microstructure evolution and mechanical properties of austenitic heat-resistant steel. Journal of Materials Research and Technology, 2019, 8, 2011-2020.                                                                      | 2.6 | 18        |
| 15 | Evaluation of fracture toughness characteristics for nuclear piping using various types of specimens.<br>International Journal of Pressure Vessels and Piping, 2012, 90-91, 9-16.                                                                                       | 1.2 | 16        |
| 16 | Plastic η factor considering strength mismatch and crack location in narrow gap weldments. Nuclear<br>Engineering and Design, 2012, 247, 34-41.                                                                                                                         | 0.8 | 16        |
| 17 | A study on ring tensile specimens. Materials Science & Engineering A: Structural Materials:<br>Properties, Microstructure and Processing, 2008, 483-484, 248-250.                                                                                                       | 2.6 | 15        |
| 18 | Evaluation of welding characteristics for manual overlay and laser cladding materials in gas turbine blades. Journal of Mechanical Science and Technology, 2012, 26, 2015-2018.                                                                                         | 0.7 | 15        |

| #  | Article                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Life Prediction of IN738LC Considering Creep Damage under Low Cycle Fatigue. International Journal of Precision Engineering and Manufacturing - Green Technology, 2018, 5, 311-316.                                                          | 2.7 | 15        |
| 20 | Failure mechanism of plasma-sprayed thermal barrier coatings under high-temperature isothermal aging conditions. Ceramics International, 2021, 47, 15883-15900.                                                                              | 2.3 | 14        |
| 21 | Methodology for predicting the life of plasma-sprayed thermal barrier coating system considering oxidation-induced damage. Journal of Materials Science and Technology, 2022, 105, 45-56.                                                    | 5.6 | 13        |
| 22 | Studies on the correlation between mechanical properties and ultrasonic parameters of aging ICr-IMo-0.25V steel. Journal of Mechanical Science and Technology, 2005, 19, 487-495.                                                            | 0.7 | 12        |
| 23 | Thermo-mechanical fatigue characteristics of CMSX-4 applied to the high-pressure turbine first-stage single-crystal rotor blade. Journal of Mechanical Science and Technology, 2020, 34, 1855-1862.                                          | 0.7 | 12        |
| 24 | Evaluation of Bond Strength of Isothermally Aged Plasma Sprayed Thermal Barrier Coating.<br>Transactions of the Korean Society of Mechanical Engineers, A, 2008, 32, 569-575.                                                                | 0.1 | 12        |
| 25 | Design Technique for Improving the Durability of Top Coating for Thermal Barrier of Gas Turbine.<br>Journal of the Korean Society for Precision Engineering, 2014, 31, 15-20.                                                                | 0.1 | 12        |
| 26 | Correction methods of an apparent negative crack growth phenomenon. International Journal of Fracture, 2000, 102, 259-269.                                                                                                                   | 1.1 | 11        |
| 27 | Evaluation of the Degradation of Plasma Sprayed Thermal Barrier Coatings Using Nano-Indentation.<br>Journal of Nanoscience and Nanotechnology, 2009, 9, 7271-7.                                                                              | 0.9 | 11        |
| 28 | Evaluation on the Delamination Life of Isothermally Aged Plasma Sprayed Thermal Barrier Coating.<br>Transactions of the Korean Society of Mechanical Engineers, A, 2009, 33, 162-168.                                                        | 0.1 | 11        |
| 29 | Fatigue safety evaluation of newly developed contact wire for eco-friendly high speed electric<br>railway system considering wear. International Journal of Precision Engineering and Manufacturing -<br>Green Technology, 2016, 3, 353-358. | 2.7 | 11        |
| 30 | Life prediction of thermal barrier coating considering degradation and thermal fatigue. International<br>Journal of Precision Engineering and Manufacturing, 2016, 17, 241-245.                                                              | 1.1 | 10        |
| 31 | TBC delamination life prediction by stress-based delamination map. International Journal of Precision Engineering and Manufacturing - Green Technology, 2017, 4, 67-72.                                                                      | 2.7 | 10        |
| 32 | Evaluation of material degradation of 1Cr-1Mo-0.25V steel by ball indentation and resistivity. Journal of Materials Science, 2006, 41, 1081-1087.                                                                                            | 1.7 | 9         |
| 33 | A study on the differential gearing device with the faculty of a limited slip differential. International<br>Journal of Precision Engineering and Manufacturing, 2009, 10, 91-96.                                                            | 1.1 | 9         |
| 34 | Prediction of residual strength after impact of CFRP composite structures. International Journal of<br>Precision Engineering and Manufacturing, 2014, 15, 1323-1329.                                                                         | 1.1 | 9         |
| 35 | Fatigue life prediction method for contact wire using maximum local stress. Journal of Mechanical<br>Science and Technology, 2015, 29, 67-70.                                                                                                | 0.7 | 9         |
| 36 | Fatigue life estimation of cold drawn contact wire. International Journal of Precision Engineering and Manufacturing, 2014, 15, 2291-2299.                                                                                                   | 1.1 | 8         |

| #  | Article                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Prediction of thermo-mechanical fatigue life of IN738 LC using the finite element analysis.<br>International Journal of Precision Engineering and Manufacturing, 2014, 15, 1733-1737.                                                        | 1.1 | 8         |
| 38 | Evaluation of thermal gradient mechanical fatigue characteristics of thermal barrier coating,<br>considering the effects of thermally grown oxide. International Journal of Precision Engineering and<br>Manufacturing, 2015, 16, 1675-1679. | 1.1 | 8         |
| 39 | Thermo mechanical fatigue life prediction of Ni-based superalloy IN738LC. International Journal of Precision Engineering and Manufacturing, 2017, 18, 561-566.                                                                               | 1.1 | 8         |
| 40 | Oxide Layer Rumpling Control Technology for High Efficiency of Eco-Friendly Combined-Cycle Power<br>Generation System. International Journal of Precision Engineering and Manufacturing - Green<br>Technology, 2020, 7, 185-193.             | 2.7 | 8         |
| 41 | Prediction of growth behavior of thermally grown oxide considering the microstructure characteristics of the top coating. Ceramics International, 2021, 47, 14160-14167.                                                                     | 2.3 | 8         |
| 42 | A method for predicting the delamination life of thermal barrier coatings under thermal gradient<br>mechanical fatigue condition considering degradation characteristics. International Journal of<br>Fatigue, 2021, 151, 106402.            | 2.8 | 8         |
| 43 | Bending Fatigue Life Evaluation of Pure Copper and Copper Alloy Contact Wire. Journal of the Korean<br>Society for Precision Engineering, 2012, 29, 1346-1350.                                                                               | 0.1 | 8         |
| 44 | Effect of temperature on the fracture toughness of A516 Gr70 steel. Journal of Mechanical Science and Technology, 2000, 14, 11-18.                                                                                                           | 0.4 | 7         |
| 45 | DC potential drop method for evaluating material degradation. Journal of Mechanical Science and Technology, 2004, 18, 1368-1374.                                                                                                             | 0.4 | 7         |
| 46 | Microstructural investigation of GTD 111DS materials in the heat treatment conditions. Journal of Mechanical Science and Technology, 2012, 26, 2019-2022.                                                                                    | 0.7 | 7         |
| 47 | Evaluation for fracture resistance curves of nuclear real pipes using curved equivalent stress gradient (curved ESG) specimens. Engineering Fracture Mechanics, 2017, 169, 89-98.                                                            | 2.0 | 7         |
| 48 | Mechanical property evaluation according to alumina content of aged porcelain insulator. Journal of Materials Research and Technology, 2020, 9, 9777-9783.                                                                                   | 2.6 | 7         |
| 49 | Replacement Strategy of Insulators Established by Probability of Failure. Energies, 2020, 13, 2043.                                                                                                                                          | 1.6 | 7         |
| 50 | A study on the characteristics of fracture resistance curve of ferritic steels. Journal of Mechanical Science and Technology, 1999, 13, 827-835.                                                                                             | 0.4 | 6         |
| 51 | Rejuvenation of IN738LC gas-turbine blades using hot isostatic pressing and a series of heat treatments. Journal of Mechanical Science and Technology, 2020, 34, 4605-4611.                                                                  | 0.7 | 6         |
| 52 | Method for Predicting Thermal Fatigue Life of Thermal Barrier Coatings Using TGO Interface Stress.<br>International Journal of Precision Engineering and Manufacturing, 2020, 21, 1677-1685.                                                 | 1.1 | 6         |
| 53 | FATIGUE CHARACTERISTICS OF SM490A WELDED JOINTS. International Journal of Modern Physics B, 2006, 20, 4141-4146.                                                                                                                             | 1.0 | 5         |
| 54 | A Study on Fatigue Life Prediction of Ni-base Superalloy. Procedia Engineering, 2013, 55, 631-635.                                                                                                                                           | 1.2 | 5         |

| #  | Article                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Effect of welding parameters on fracture resistance characteristics of nuclear piping. International<br>Journal of Precision Engineering and Manufacturing, 2015, 16, 65-71.                                                 | 1.1 | 5         |
| 56 | Investigation of welding residual stress of high tensile steel by finite element method and experiment.<br>Journal of Mechanical Science and Technology, 1999, 13, 879-885.                                                  | 0.4 | 4         |
| 57 | A study of the LCF characteristics of the Ni-based superalloy IN738LC. International Journal of Precision Engineering and Manufacturing, 2015, 16, 775-780.                                                                  | 1.1 | 4         |
| 58 | Transformation of fracture resistance curves by using bending modified Q (Qm) factor. International<br>Journal of Precision Engineering and Manufacturing, 2017, 18, 85-91.                                                  | 1.1 | 4         |
| 59 | An Effective Electrical Resonance-Based Method to Detect Delamination in Thermal Barrier Coating.<br>Journal of Thermal Spray Technology, 2018, 27, 336-343.                                                                 | 1.6 | 4         |
| 60 | Development of Laboratory Fatigue Testing Apparatus for Automotive Vehicle Engine Valve Simulating<br>Actual Operating Conditions. International Journal of Precision Engineering and Manufacturing, 2019,<br>20, 1241-1253. | 1.1 | 4         |
| 61 | A Study on the Tensile Property of Ring Specimen Having Gauge Length. Transactions of the Korean<br>Society of Mechanical Engineers, A, 2005, 29, 555-562.                                                                   | 0.1 | 4         |
| 62 | Top Coating Design Technique for Thermal Barrier of Gas Turbine. Journal of the Korean Society for<br>Precision Engineering, 2013, 30, 802-808.                                                                              | 0.1 | 4         |
| 63 | Evaluation of Effect on Thermal Fatigue Life Considering TGO Growth. Journal of the Korean Society for Precision Engineering, 2014, 31, 1155-1159.                                                                           | 0.1 | 4         |
| 64 | Methodology for Predicting the Durability of Aged Tire Sidewall Under Actual Driving Conditions.<br>International Journal of Precision Engineering and Manufacturing, 2022, 23, 881-893.                                     | 1.1 | 4         |
| 65 | THE MICROSTRUCTURAL ANALYSIS OF THE EFFECT OF FIC ON GAS TURBINE BLADES. International Journal of Modern Physics B, 2006, 20, 4135-4140.                                                                                     | 1.0 | 3         |
| 66 | FATIGUE CRACK PROPAGATION BEHAVIOR ACCORDING TOFIBER ARRAYING DIRECTION FOR LOAD DIRECTION INWOVEN CFRP COMPOSITE. International Journal of Modern Physics B, 2010, 24, 2615-2620.                                           | 1.0 | 3         |
| 67 | Development of thermal gradient prediction method for thermal barrier coating. International<br>Journal of Precision Engineering and Manufacturing, 2014, 15, 1029-1033.                                                     | 1.1 | 3         |
| 68 | Validation of fracture toughness characteristics of nuclear plant piping and safety margin analysis by<br>using CP specimen. Engineering Fracture Mechanics, 2017, 186, 39-46.                                               | 2.0 | 3         |
| 69 | Life Prediction Method for Thermal Barrier Coating of High-Efficiency Eco-Friendly Combined Cycle<br>Power Plant. International Journal of Precision Engineering and Manufacturing - Green Technology,<br>2019, 6, 329-337.  | 2.7 | 3         |
| 70 | A further study on fracture resistance evaluation of nuclear pipes using CP specimens. Engineering<br>Fracture Mechanics, 2020, 235, 107167.                                                                                 | 2.0 | 3         |
| 71 | A cumulative oxide growth model considering the deterioration history of thermal barrier coatings.<br>Corrosion Science, 2021, 182, 109273.                                                                                  | 3.0 | 3         |
| 72 | Study of Failure Criterion of Hole-Notched Plain-Weave Carbon Fiber Reinforced Plastic (CFRP)<br>Composites. Transactions of the Korean Society of Mechanical Engineers, A, 2010, 34, 481-486.                               | 0.1 | 3         |

| #  | Article                                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Durability Evaluation of Thermal Barrier Coating (TBC) According to Growth of Thermally Grown<br>Oxide (TGO). Transactions of the Korean Society of Mechanical Engineers, A, 2014, 38, 1431-1434.                                                   | 0.1 | 3         |
| 74 | Low Cycle Fatigue Characteristics of a Ni-Based Single Crystal Superalloy CMSX-4 at Elevated Temperature. Journal of the Korean Society for Precision Engineering, 2019, 36, 271-279.                                                               | 0.1 | 3         |
| 75 | FATIGUE LIFE CHARACTERISTICS OF WATERWORKS PIPE WELDS. International Journal of Modern Physics B, 2006, 20, 3969-3974.                                                                                                                              | 1.0 | 2         |
| 76 | Design of overlay coated region with hardfacing, transition and damage diminution layers for the reduction of damages of hot forging tools. Journal of Mechanical Science and Technology, 2017, 31, 5639-5647.                                      | 0.7 | 2         |
| 77 | Prediction of thermal fatigue life based on the microstructure of thermal barrier coating applied to single-crystal CMSX-4 considering stress ratio. Ceramics International, 2021, 47, 21950-21958.                                                 | 2.3 | 2         |
| 78 | Influence of corundum content on integrity of porcelain after long-term exposure to thermo-mechanical fatigue environments. Ceramics International, 2021, 47, 28479-28486.                                                                          | 2.3 | 2         |
| 79 | A Study on the Evaluation of the Pipe Fracture Characteristic. Transactions of the Korean Society of<br>Mechanical Engineers, A, 2005, 29, 107-114.                                                                                                 | 0.1 | 2         |
| 80 | The impact of cap orientation on mechanical strength of high voltage devices and a novel design for improvement. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2022, 44, 1.                                              | 0.8 | 2         |
| 81 | Methodology for evaluating the tightening torque-clamping force relationship and friction coefficients in bolted joints. Journal of Mechanical Science and Technology, 2022, 36, 1913-1919.                                                         | 0.7 | 2         |
| 82 | Method for Evaluating the Fatigue Life of Stem End Considering the Structural Characteristics of Engine Valve for Automobiles. International Journal of Automotive Technology, 2022, 23, 303-313.                                                   | 0.7 | 2         |
| 83 | Evaluation on fracture toughness of low activation ferritic steel (JLF-1). International Journal of Applied Electromagnetics and Mechanics, 2002, 13, 359-364.                                                                                      | 0.3 | 1         |
| 84 | FATIGUE STRENGTH ASSESSMENT OF THE FILLET WELDED CRUCIFORM JOINTS. International Journal of Modern Physics B, 2006, 20, 4225-4230.                                                                                                                  | 1.0 | 1         |
| 85 | Primary stability evaluation of a hip-joint implant systems according to different surgical methods<br>and bone densities under cyclic loading condition. International Journal of Precision Engineering and<br>Manufacturing, 2015, 16, 1095-1100. | 1.1 | 1         |
| 86 | The study on delamination life of TBC through burner-rig test. International Journal of Precision<br>Engineering and Manufacturing, 2017, 18, 555-560.                                                                                              | 1.1 | 1         |
| 87 | Design of Microstructure by Evaluating the Effect of Thermal Barrier Coating's Microstructure on<br>TGO Interface Stress. Journal of the Korea Institute of Military Science and Technology, 2020, 23,<br>435-443.                                  | 0.1 | 1         |
| 88 | Evaluation of Critical Crack Length of Tension Bar for Continuous Ship Uploader. Journal of the<br>Korean Society for Precision Engineering, 2018, 35, 1169-1177.                                                                                   | 0.1 | 1         |
| 89 | Creep performance evaluation considering the operating environment of gas turbine blades with rejuvenation maintenance. Journal of Mechanical Science and Technology, 2022, 36, 127.                                                                | 0.7 | 1         |
| 90 | Evaluation of material degradation of lcr-lmo-0.25v steel using ball indentation method. Journal of<br>Mechanical Science and Technology, 2004, 18, 1730-1737.                                                                                      | 0.4 | 0         |

| #  | Article                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | EVALUATION OF RESIDUAL STRESS OF COPPER PIPE BY USING RAMAN SPECTROSCOPY. Modern Physics Letters B, 2008, 22, 1007-1012.                                                                           | 1.0 | 0         |
| 92 | Analytical and experimental stiffness estimation of heat pipe supporter for nuclear power plant<br>through a homogenization process. Advances in Mechanical Engineering, 2015, 7, 168781401559386. | 0.8 | 0         |
| 93 | Comparison of safety margin in LBB design of nuclear pipes based on various types of fracture resistance test specimens. Journal of Mechanical Science and Technology, 2021, 35, 2097-2105.        | 0.7 | Ο         |
| 94 | Performance Evaluation and Analysis on Protective Coating Applied to HPT Heat Shield of GT24 Gas<br>Turbine. Journal of the Korean Society for Precision Engineering, 2019, 36, 53-57.             | 0.1 | 0         |