
Andre Gerald Buret

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2972186/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of Hydrogen Sulfide on the Microbiome: From Toxicity to Therapy. Antioxidants and Redox Signaling, 2022, 36, 211-219.	5.4	58
2	Giardia duodenalis cysteine proteases cleave proteinase-activated receptor-2 to regulate intestinal goblet cell mucin gene expression. International Journal for Parasitology, 2022, 52, 285-292.	3.1	7
3	Cooperation between host immunity and the gut bacteria is essential for helminth-evoked suppression of colitis. Microbiome, 2021, 9, 186.	11.1	28
4	High-fat diet increases the severity of Giardia infection in association with low-grade inflammation and gut microbiota dysbiosis. Scientific Reports, 2021, 11, 18842.	3.3	9
5	Gastrointestinal biofilms in health and disease. Nature Reviews Gastroenterology and Hepatology, 2021, 18, 314-334.	17.8	124
6	Pathogenesis and post-infectious complications in giardiasis. Advances in Parasitology, 2020, 107, 173-199.	3.2	52
7	Giardia spp. promote the production of antimicrobial peptides and attenuate disease severity induced by attaching and effacing enteropathogens via the induction of the NLRP3 inflammasome. International Journal for Parasitology, 2020, 50, 263-275.	3.1	22
8	Giardia spp. and the Gut Microbiota: Dangerous Liaisons. Frontiers in Microbiology, 2020, 11, 618106.	3.5	42
9	Acceptance of the 2019 Stoll-Stunkard Memorial Lectureship Award: The Study of Host-Parasite Interactions to Better Understand Fundamental Host Physiology: The Model of Giardiasis. Journal of Parasitology, 2020, 105, 955.	0.7	2
10	Giardia Cysteine Proteases: The Teeth behind the Smile. Trends in Parasitology, 2019, 35, 636-648.	3.3	29
11	Rethinking Graduate Education in Parasitology: A Case Study. Trends in Parasitology, 2019, 35, 665-668.	3.3	2
12	Pathobiont release from dysbiotic gut microbiota biofilms in intestinal inflammatory diseases: a role for iron?. Journal of Biomedical Science, 2019, 26, 1.	7.0	204
13	Iron Sequestration in Microbiota Biofilms As A Novel Strategy for Treating Inflammatory Bowel Disease. Inflammatory Bowel Diseases, 2018, 24, 1493-1502.	1.9	30
14	Interactions of <i>Giardia sp.</i> with the intestinal barrier: Epithelium, mucus, and microbiota. Tissue Barriers, 2017, 5, e1274354.	3.2	61
15	Giardia duodenalis induces pathogenic dysbiosis of human intestinal microbiota biofilms. International Journal for Parasitology, 2017, 47, 311-326.	3.1	125
16	Cysteine Protease–Dependent Mucous Disruptions and Differential Mucin Gene Expression in Giardia duodenalis Infection. American Journal of Pathology, 2017, 187, 2486-2498.	3.8	60
17	Giardia co-infection promotes the secretion of antimicrobial peptides beta-defensin 2 and trefoil factor 3 and attenuates attaching and effacing bacteria-induced intestinal disease. PLoS ONE, 2017, 12, e0178647.	2.5	54
18	Enteropathogen-Induced Microbiota Biofilm Disruptions and Post-Infectious Intestinal Inflammatory Disorders. Current Tropical Medicine Reports, 2016, 3, 94-101.	3.7	3

Andre Gerald Buret

#	Article	IF	CITATIONS
19	<i>Giardia duodenalis</i> induces paracellular bacterial translocation and causes postinfectious visceral hypersensitivity. American Journal of Physiology - Renal Physiology, 2016, 310, G574-G585.	3.4	64
20	Hydrogen Sulfide Protects from Colitis and Restores Intestinal Microbiota Biofilm and Mucus Production. Inflammatory Bowel Diseases, 2015, 21, 1006-1017.	1.9	150
21	Disruptions of Host Immunity and Inflammation by Giardia Duodenalis: Potential Consequences for Co-Infections in the Gastro-Intestinal Tract. Pathogens, 2015, 4, 764-792.	2.8	60
22	Proresolution effects of hydrogen sulfide during colitis are mediated through hypoxiaâ€inducible factorâ€1α. FASEB Journal, 2015, 29, 1591-1602.	0.5	52
23	<i>Giardia duodenalis</i> -induced alterations of commensal bacteria kill <i>Caenorhabditis elegans</i> : a new model to study microbial-microbial interactions in the gut. American Journal of Physiology - Renal Physiology, 2015, 308, G550-G561.	3.4	50
24	Giardia duodenalis: New Research Developments in Pathophysiology, Pathogenesis, and Virulence Factors. Current Tropical Medicine Reports, 2015, 2, 110-118.	3.7	39
25	Campylobacter jejuni Increases Flagellar Expression and Adhesion of Noninvasive Escherichia coli: Effects on Enterocytic Toll-Like Receptor 4 and CXCL-8 Expression. Infection and Immunity, 2015, 83, 4571-4581.	2.2	31
26	Giardia duodenalis Surface Cysteine Proteases Induce Cleavage of the Intestinal Epithelial Cytoskeletal Protein Villin via Myosin Light Chain Kinase. PLoS ONE, 2015, 10, e0136102.	2.5	70
27	Tulathromycin Exerts Proresolving Effects in Bovine Neutrophils by Inhibiting Phospholipases and Altering Leukotriene B ₄ , Prostaglandin E ₂ , and Lipoxin A ₄ Production. Antimicrobial Agents and Chemotherapy, 2014, 58, 4298-4307.	3.2	16
28	Giardia duodenalis Cathepsin B Proteases Degrade Intestinal Epithelial Interleukin-8 and Attenuate Interleukin-8-Induced Neutrophil Chemotaxis. Infection and Immunity, 2014, 82, 2772-2787.	2.2	91
29	Modulatory mechanisms of enterocyte apoptosis by viral, bacterial and parasitic pathogens. Critical Reviews in Microbiology, 2014, 40, 1-17.	6.1	21
30	Giardia duodenalis Infection Reduces Granulocyte Infiltration in an In Vivo Model of Bacterial Toxin-Induced Colitis and Attenuates Inflammation in Human Intestinal Tissue. PLoS ONE, 2014, 9, e109087.	2.5	61
31	Extra-intestinal and long term consequences of Giardia duodenalis infections. World Journal of Gastroenterology, 2013, 19, 8974.	3.3	308
32	Campylobacter jejuni Disrupts Protective Toll-Like Receptor 9 Signaling in Colonic Epithelial Cells and Increases the Severity of Dextran Sulfate Sodium-Induced Colitis in Mice. Infection and Immunity, 2012, 80, 1563-1571.	2.2	55
33	Host parasite interactions and pathophysiology in Giardia infections. International Journal for Parasitology, 2011, 41, 925-933.	3.1	185
34	Interleukin-1 receptor phosphorylation activates Rho kinase to disrupt human gastric tight junctional claudin-4 during <i>Helicobacter pylori</i> infection. Cellular Microbiology, 2010, 12, 692-703.	2.1	45
35	A role for Campylobacter jejuni-induced enteritis in inflammatory bowel disease?. American Journal of Physiology - Renal Physiology, 2010, 298, G1-G9.	3.4	73
36	Immuno-modulation and anti-inflammatory benefits of antibiotics: the example of tilmicosin. Canadian Journal of Veterinary Research, 2010, 74, 1-10.	0.2	32

Andre Gerald Buret

#	Article	IF	CITATIONS
37	Campylobacter jejuni induces transcellular translocation of commensal bacteria via lipid rafts. Gut Pathogens, 2009, 1, 2.	3.4	113
38	Long term platelet responses to Helicobacter pylori eradication in Canadian patients with immune thrombocytopenic purpura. International Journal of Hematology, 2008, 88, 212-218.	1.6	42
39	SGLT-1-mediated glucose uptake protects human intestinal epithelial cells against Giardia duodenalis-induced apoptosis. International Journal for Parasitology, 2008, 38, 923-934.	3.1	61
40	Caspases-3, -8, and -9 are required for induction of epithelial cell apoptosis by enteropathogenic E. coli but are dispensable for increased paracellular permeability. Microbial Pathogenesis, 2008, 44, 311-319.	2.9	26
41	Genotypic Characterization of an Epithelial Cell Line for the Study of Parasite–Epithelial Interactions. Journal of Parasitology, 2008, 94, 545-548.	0.7	10
42	Epidermal Growth Factor Inhibits <i>Campylobacter jejuni</i> -Induced Claudin-4 Disruption, Loss of Epithelial Barrier Function, and <i>Escherichia coli</i> Translocation. Infection and Immunity, 2008, 76, 3390-3398.	2.2	109
43	Mechanisms of epithelial dysfunction in giardiasis. Gut, 2007, 56, 316-317.	12.1	117
44	How Stress Induces Intestinal Hypersensitivity. American Journal of Pathology, 2006, 168, 3-5.	3.8	25
45	Host Epithelial Interactions with Helicobacter Pylori: A Role for Disrupted Gastric Barrier Function in the Clinical Outcome of Infection?. Canadian Journal of Gastroenterology & Hepatology, 2005, 19, 543-552.	1.7	5
46	SGLTâ€lâ€mediated glucose uptake protects intestinal epithelial cells against LPSâ€induced apoptosis and barrier defects: a novel cellular rescue mechanism?. FASEB Journal, 2005, 19, 1822-1835.	0.5	140
47	Role of CD8 ⁺ and CD4 ⁺ T Lymphocytes in Jejunal Mucosal Injury during Murine Giardiasis. Infection and Immunity, 2004, 72, 3536-3542.	2.2	118
48	Infection of human and bovine epithelial cells with Cryptosporidium andersoni induces apoptosis and disrupts tight junctional ZO-1: effects of epidermal growth factor. International Journal for Parasitology, 2003, 33, 1363-1371.	3.1	71
49	Strain-Dependent Induction of Enterocyte Apoptosis by <i>Giardia lamblia</i> Disrupts Epithelial Barrier Function in a Caspase-3-Dependent Manner. Infection and Immunity, 2002, 70, 3673-3680.	2.2	215
50	Intestinal infection with Giardia spp. reduces epithelial barrier function in a myosin light chain kinase–dependent fashion. Gastroenterology, 2002, 123, 1179-1190.	1.3	171
51	The effect of enterohemorrhagic Escherichia coli 0157:H7 on intestinal structure and solute transport in rabbits. Gastroenterology, 1993, 104, 467-474.	1.3	66