
Jadranka TravaÅ;-Sejdić

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2972065/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Conducting polymer hydrogels with electrically-tuneable mechanical properties as dynamic cell culture substrates. Materials Science and Engineering C, 2022, 134, 112559.	7.3	4
2	Ultra-Highly Sensitive DNA Detection with Conducting Polymer-Modified Electrodes: Mechanism, Manufacture and Prospects for Rapid e-PCR. Journal of the Electrochemical Society, 2022, 169, 037521.	2.9	1
3	Stretchable and Flexible Nonâ€Enzymatic Glucose Sensor Based on Poly(ether sulfone)â€Derived Laserâ€Induced Graphene for Wearable Skin Diagnostics. Advanced Materials Technologies, 2022, 7, .	5.8	12
4	Micropipetteâ€Based Fabrication of Free‣tanding, Conducting Polymer Bilayer Actuators. Advanced Materials Technologies, 2022, 7, .	5.8	2
5	Conducting Polymer-Coated Carbon Cloth Captures and Releases Extracellular Vesicles by a Rapid and Controlled Redox Process. ACS Applied Materials & Interfaces, 2022, 14, 32880-32889.	8.0	11
6	Insect odorant receptor nanodiscs for sensitive and specific electrochemical detection of odorant compounds. Sensors and Actuators B: Chemical, 2021, 329, 129243.	7.8	7
7	Polymer Brush Functionalization of Polyurethane Tunable Nanopores for Resistive Pulse Sensing. ACS Applied Polymer Materials, 2021, 3, 279-289.	4.4	10
8	Fabrication of conducting polymer microelectrodes and microstructures for bioelectronics. Journal of Materials Chemistry C, 2021, 9, 9730-9760.	5.5	23
9	Disposable and portable gold nanoparticles modified - laser-scribed graphene sensing strips for electrochemical, non-enzymatic detection of glucose. Electrochimica Acta, 2021, 378, 138132.	5.2	42
10	Electrochemical aptasensor for 17β-estradiol using disposable laser scribed graphene electrodes. Biosensors and Bioelectronics, 2021, 185, 113247.	10.1	39
11	Insect odorant receptor-based biosensors: Current status and prospects. Biotechnology Advances, 2021, 53, 107840.	11.7	19
12	Electroactive Metal Complexes Covalently Attached to Conductive PEDOT Films: A Spectroelectrochemical Study. ACS Applied Materials & Interfaces, 2021, 13, 1301-1313.	8.0	14
13	Comparison of gold and PEDOT:PSS contacts for high-resolution gastric electrical mapping using flexible printed circuit arrays. , 2021, 2021, 6937-6940.		1
14	Electrochemical cytosensors for detection of breast cancer cells. Biosensors and Bioelectronics, 2020, 151, 111984.	10.1	69
15	A Conductive Microfiltration Membrane for In Situ Fouling Detection: Proofâ€ofâ€Concept Using Model Wine Solutions. Macromolecular Rapid Communications, 2020, 41, 2000303.	3.9	3
16	Novel Electrochemically Switchable, Flexible, Microporous Cloth that Selectively Captures, Releases, and Concentrates Intact Extracellular Vesicles. ACS Applied Materials & Interfaces, 2020, 12, 39005-39013.	8.0	24
17	Direct writing of 3D conjugated polymer micro/nanostructures for organic electronics and bioelectronics. Polymer Chemistry, 2020, 11, 4530-4541.	3.9	14
18	Electrochemical Study of Gold Microelectrodes Modified with PEDOT to Quantify Uric Acid in Milk Samples. Electroanalysis, 2020, 32, 2101-2111.	2.9	9

#	Article	IF	CITATIONS
19	The Applications of Solid-State NMR to Conducting Polymers. The Special Case on Polyaniline. Molecules, 2020, 25, 444.	3.8	12
20	Synergistic improvement in the performance of insect odorant receptor based biosensors in the presence of Orco. Biosensors and Bioelectronics, 2020, 153, 112040.	10.1	20
21	Improving the Electrochemical Performance and Stability of Polypyrrole by Polymerizing Ionic Liquids. Polymers, 2020, 12, 136.	4.5	7
22	Highly stretchable, solution-processable, and crosslinkable poly(3,4-ethylenedioxithiophene)-based conjugated polymers. European Polymer Journal, 2020, 125, 109508.	5.4	7
23	Neural Tissue Engineering: Human Neural Tissues from Neural Stem Cells Using Conductive Biogel and Printed Polymer Microelectrode Arrays for 3D Electrical Stimulation (Adv. Healthcare Mater. 15/2019). Advanced Healthcare Materials, 2019, 8, 1970062.	7.6	1
24	Luminescent CH ₃ NH ₃ PbBr ₃ /β yclodextrin Core/Shell Nanodots with Controlled Size and Ultrastability through Hostâ€Guest Interactions. ChemNanoMat, 2019, 5, 1311-1316.	2.8	11
25	Grafting Poly(acrylic acid) from PEDOT To Control the Deposition and Growth of Platinum Nanoparticles for Enhanced Electrocatalytic Hydrogen Evolution. ACS Applied Energy Materials, 2019, 2, 1436-1444.	5.1	9
26	Human Neural Tissues from Neural Stem Cells Using Conductive Biogel and Printed Polymer Microelectrode Arrays for 3D Electrical Stimulation. Advanced Healthcare Materials, 2019, 8, e1900425.	7.6	62
27	Flexible and Stretchable PEDOTâ€Embedded Hybrid Substrates for Bioengineering and Sensory Applications. ChemNanoMat, 2019, 5, 729-737.	2.8	15
28	Investigating Electrochemical Stability and Reliability of Gold Electrodeâ€electrolyte Systems to Develop Bioelectronic Nose Using Insect Olfactory Receptor. Electroanalysis, 2019, 31, 726-738.	2.9	13
29	Conjugated polymers and composites for stretchable organic electronics. Journal of Materials Chemistry C, 2019, 7, 5534-5552.	5.5	114
30	Photo-patternable, stretchable and electrically conductive graft copolymers of poly(3-hexylthiophene). Polymer Chemistry, 2019, 10, 6278-6289.	3.9	7
31	An ultrasensitive electrochemical impedance-based biosensor using insect odorant receptors to detect odorants. Biosensors and Bioelectronics, 2019, 126, 207-213.	10.1	60
32	The influence of macropores on PEDOT/PSS microelectrode coatings for neuronal recording and stimulation. Sensors and Actuators B: Chemical, 2019, 281, 549-560.	7.8	34
33	Molecular "Building Block―and "Side Chain Engineering― Approach to Synthesis of Multifunctional and Soluble Poly(pyrrole phenylene)s. Macromolecular Rapid Communications, 2019, 40, 1800749.	3.9	5
34	Electrospun Polythiophene Phenylenes for Tissue Engineering. Biomacromolecules, 2018, 19, 1456-1468.	5.4	37
35	Sensitive, selective, disposable electrochemical dopamine sensor based on PEDOT-modified laser scribed graphene. Biosensors and Bioelectronics, 2018, 107, 184-191.	10.1	238
36	PNA <i>versus</i> DNA in electrochemical gene sensing based on conducting polymers: study of charge and surface blocking effects on the sensor signal. Analyst, The, 2018, 143, 687-694.	3.5	22

#	Article	IF	CITATIONS
37	Micelle directed chemical polymerization of polypyrrole particles for the electrically triggered release of dexamethasone base and dexamethasone phosphate. International Journal of Pharmaceutics, 2018, 543, 38-45.	5.2	19
38	Direct Writing and Characterization of Three-Dimensional Conducting Polymer PEDOT Arrays. ACS Applied Materials & amp; Interfaces, 2018, 10, 11888-11895.	8.0	46
39	Conducting electrospun fibres with polyanionic grafts as highly selective, label-free, electrochemical biosensor with a low detection limit for non-Hodgkin lymphoma gene. Biosensors and Bioelectronics, 2018, 100, 549-555.	10.1	38
40	Data on preparation and characterization of an insect odorant receptor based biosensor. Data in Brief, 2018, 21, 2142-2148.	1.0	6
41	Detection of Neurotransmitters by Three-Dimensional Laser-Scribed Graphene Grass Electrodes. ACS Applied Materials & Interfaces, 2018, 10, 42136-42145.	8.0	49
42	Influence of solvent on linear polypyrrole–polyethylene oxide actuators. Journal of Applied Polymer Science, 2018, 135, 46831.	2.6	9
43	Long side-chain grafting imparts intrinsic adhesiveness to poly(thiophene phenylene) conjugated polymer. European Polymer Journal, 2018, 109, 237-247.	5.4	7
44	Chain shape and thin film behaviour of poly(thiophene)- <i>graft</i> -poly(acrylate urethane). Soft Matter, 2018, 14, 6875-6882.	2.7	4
45	Molecular Approach to Conjugated Polymers with Biomimetic Properties. Accounts of Chemical Research, 2018, 51, 1581-1589.	15.6	57
46	Self-healing polythiophene phenylenes for stretchable electronics. European Polymer Journal, 2018, 105, 331-338.	5.4	18
47	Synthesis of grafted poly(p- phenyleneethynylene) via ARGET ATRP: Towards nonaggregating and photoluminescence materials. European Polymer Journal, 2017, 89, 263-271.	5.4	11
48	Direct laser scribed graphene/PVDF-HFP composite electrodes with improved mechanical water wear and their electrochemistry. Applied Materials Today, 2017, 8, 35-43.	4.3	18
49	Thermoresponsive laterally-branched polythiophene phenylene derivative as water-soluble temperature sensor. Polymer Chemistry, 2017, 8, 4352-4358.	3.9	31
50	New immobilisation method for oligonucleotides on electrodes enables highly-sensitive, electrochemical label-free gene sensing. Biosensors and Bioelectronics, 2017, 97, 128-135.	10.1	22
51	Functionalization of conducting polymers for biointerface applications. Progress in Polymer Science, 2017, 70, 18-33.	24.7	91
52	Molecularly Engineered Intrinsically Healable and Stretchable Conducting Polymers. Chemistry of Materials, 2017, 29, 8850-8858.	6.7	49
53	Dopant macroinitiator for electropolymerisation and functionalisation of conducting polymer thin films. Polymer International, 2017, 66, 1841-1850.	3.1	2
54	Conducting Polymers as Electrode Coatings for Neuronal Multi-electrode Arrays. Trends in Biotechnology, 2017, 35, 93-95.	9.3	22

#	Article	IF	CITATIONS
55	Stability and Synergistic Effect of Polyaniline/TiO2 Photocatalysts in Degradation of Azo Dye in Wastewater. Nanomaterials, 2017, 7, 412.	4.1	79
56	Investigation of the Reduction of Graphene Oxide by Lithium Triethylborohydride. Journal of Nanomaterials, 2016, 2016, 1-10.	2.7	11
57	Multiresponsive Behavior of Functional Poly(p-phenylene vinylene)s in Water. Polymers, 2016, 8, 365.	4.5	6
58	Electrostatic gating in carbon nanotube aptasensors. Nanoscale, 2016, 8, 13659-13668.	5.6	37
59	Polymer electronic composites that heal by solvent vapour. RSC Advances, 2016, 6, 98466-98474.	3.6	10
60	Conducting polymers with defined micro- or nanostructures for drug delivery. Biomaterials, 2016, 111, 149-162.	11.4	87
61	Highly processable, rubbery poly(n-butyl acrylate) grafted poly(phenylene vinylene)s. European Polymer Journal, 2016, 84, 355-365.	5.4	14
62	Graft Copolymers with Conducting Polymer Backbones: A Versatile Route to Functional Materials. Chemical Record, 2016, 16, 393-418.	5.8	28
63	Conducting polymer based electrochemical biosensors. Physical Chemistry Chemical Physics, 2016, 18, 8264-8277.	2.8	177
64	Bioinspired dry adhesive: Poly(dimethylsiloxane) grafted with poly(2-ethylhexyl acrylate) brushes. European Polymer Journal, 2015, 68, 432-440.	5.4	10
65	Label-free electrochemical aptasensor for femtomolar detection of 17β-estradiol. Biosensors and Bioelectronics, 2015, 70, 398-403.	10.1	73
66	Conductive surfaces with dynamic switching in response to temperature and salt. Journal of Materials Chemistry B, 2015, 3, 9285-9294.	5.8	30
67	Self-Assembled Oligoanilinic Nanosheets: Molecular Structure Revealed by Solid-State NMR Spectroscopy. Macromolecules, 2015, 48, 8838-8843.	4.8	15
68	Self-assembled centimetre-sized rods obtained in the oxidation of <i>o</i> -phenylenediamine and aniline. Polymer International, 2015, 64, 1135-1141.	3.1	5
69	Bio-inspired flow sensor from printed PEDOT:PSS micro-hairs. Bioinspiration and Biomimetics, 2015, 10, 016017.	2.9	25
70	A Label-Free, Sensitive, Real-Time, Semiquantitative Electrochemical Measurement Method for DNA Polymerase Amplification (ePCR). Analytical Chemistry, 2015, 87, 5189-5197.	6.5	18
71	Ultrasensitive Colorimetric Detection of 17β-Estradiol: The Effect of Shortening DNA Aptamer Sequences. Analytical Chemistry, 2015, 87, 4201-4209.	6.5	148
72	Electrospun rubber fibre mats with electrochemically controllable pore sizes. Journal of Materials Chemistry B, 2015, 3, 4249-4258.	5.8	29

#	Article	IF	CITATIONS
73	Labelâ€Free, Electrochemical Quantitation of Potassium Ions from Femtomolar Levels. Chemistry - an Asian Journal, 2015, 10, 2169-2175.	3.3	21
74	Highly functionalisable polythiophene phenylenes. Polymer Chemistry, 2015, 6, 7618-7629.	3.9	29
75	Distinguishing cytosine methylation using electrochemical, label-free detection of DNA hybridization and ds-targets. Biosensors and Bioelectronics, 2015, 64, 74-80.	10.1	42
76	Self-Assembly of Methyl Substituted Polyaniline Hollow Nanospheres in a Polyelectrolyte Solution. International Journal of Polymeric Materials and Polymeric Biomaterials, 2014, 63, 602-608.	3.4	7
77	Block copolymers for protein ordering. Journal of Applied Polymer Science, 2014, 131, .	2.6	16
78	Flammability and Thermal Properties of Zeolite-Filled High-Impact Polystyrene Composites. Polymer-Plastics Technology and Engineering, 2014, 53, 1487-1493.	1.9	3
79	A Novel Micro Ring Structured PPy/pTS Free Standing Film With Improved Actuation Stability. International Journal of Polymeric Materials and Polymeric Biomaterials, 2014, 63, 424-429.	3.4	3
80	Thermal decomposition of fire-retarded high-impact polystyrene and high-impact polystyrene/ethylene–vinyl acetate blend nanocomposites followed by thermal analysis. Journal of Elastomers and Plastics, 2014, 46, 233-252.	1.5	8
81	Carbide-derived carbon as active interlayer of polypyrrole tri-layer linear actuator. Sensors and Actuators B: Chemical, 2014, 201, 100-106.	7.8	14
82	Electrochemistry of interlayer supported polypyrrole tri-layer linear actuators. Electrochimica Acta, 2014, 122, 322-328.	5.2	14
83	Direct Writing of Conducting Polymers. Macromolecular Rapid Communications, 2013, 34, 1296-1300.	3.9	28
84	A new precursor for conducting polymer-based brush interfaces with electroactivity in aqueous solution. Polymer, 2013, 54, 1305-1317.	3.8	27
85	Water-soluble anionic poly(p-phenylene vinylenes) with high luminescence. Polymer Chemistry, 2013, 4, 2506.	3.9	22
86	Bowl-shaped poly(3,4-ethylenedioxythiophene)/γ-Fe2O3 composites with elecromagnetic function. Chinese Journal of Polymer Science (English Edition), 2013, 31, 503-513.	3.8	3
87	Grafting from Poly(3,4-ethylenedioxythiophene): A Simple Route to Versatile Electrically Addressable Surfaces. Macromolecules, 2013, 46, 4955-4965.	4.8	51
88	Facile synthesis of poly(methylsilsesquioxane) and MgO nanoparticle composite dielectrics. Journal of Materials Research, 2013, 28, 1490-1497.	2.6	3
89	Macromol. Rapid Commun. 16/2013. Macromolecular Rapid Communications, 2013, 34, 1336-1336.	3.9	0
90	MAPPING ELECTROCHEMISTRY AT THE MICRO AND NANOSCALES WITH SCANNING ION CONDUCTANCE MICROSCOPY. World Scientific Series in Nanoscience and Nanotechnology, 2013, , 513-527.	0.1	0

#	Article	IF	CITATIONS
91	The application of nanopipettes to conducting polymer fabrication, imaging and electrochemical characterization. Progress in Polymer Science, 2012, 37, 1177-1191.	24.7	30
92	Switchable surfaces of electroactive polymer brushes grafted from polythiophene ATRP-macroinitiator. Synthetic Metals, 2012, 162, 381-390.	3.9	36
93	Reversible Electrochemical Switching of Polymer Brushes Grafted onto Conducting Polymer Films. Langmuir, 2012, 28, 8072-8083.	3.5	73
94	The electrochemical growth of highly conductive single PEDOT (conducting polymer):BMIPF6 (ionic) Tj ETQq0 0	0 rgBT /0	verlock 10 Tf 24
95	Effects of Redox Couple on the Response of Polypyrroleâ€Based Electrochemical DNA Sensors. Electroanalysis, 2012, 24, 1311-1317.	2.9	21
96	A highly sensitive, label-free gene sensor based on a single conducting polymer nanowire. Biosensors and Bioelectronics, 2012, 35, 258-264.	10.1	46
97	Switch on or switch off: An optical DNA sensor based on poly(p-phenylenevinylene) grafted magnetic beads. Biosensors and Bioelectronics, 2012, 35, 498-502.	10.1	24
98	Measuring the Ionic Flux of an Electrochemically Actuated Conducting Polymer Using Modified Scanning Ion Conductance Microscopy. Journal of the American Chemical Society, 2011, 133, 5748-5751.	13.7	33
99	High-Sensitivity, Label-Free DNA Sensors Using Electrochemically Active Conducting Polymers. Analytical Chemistry, 2011, 83, 3415-3421.	6.5	68
100	Lamellar‣tructured Nanoflakes Comprised of Stacked Oligoaniline Nanosheets. Chemistry - an Asian Journal, 2011, 6, 791-796.	3.3	38
101	ABTS ^{•+} scavenging activity of polypyrrole, polyaniline and poly(3,4â€ethylenedioxythiophene). Polymer International, 2011, 60, 69-77.	3.1	56
102	Simultaneous Vaporâ€Phase Polymerization of PEDOT and a Siloxane into Organic/Inorganic Hybrid Thin Films. Macromolecular Chemistry and Physics, 2011, 212, 521-530.	2.2	21
103	Hollow Polyaniline and Indomethacin Composite Microspheres for Controlled Indomethacin Release. Macromolecular Chemistry and Physics, 2011, 212, 2674-2684.	2.2	17
104	Scanned Pipette Techniques for the Highly Localized Electrochemical Fabrication and Characterization of Conducting Polymer Thin Films, Microspots, Microribbons, and Nanowires. Advanced Functional Materials, 2011, 21, 4607-4616.	14.9	42
105	DNA Detection Using Functionalized Conducting Polymers. Methods in Molecular Biology, 2011, 751, 437-452.	0.9	3
106	Electrochemically controlled drug delivery based on intrinsically conducting polymers. Journal of Controlled Release, 2010, 146, 6-15.	9.9	386
107	Development of a Controlled Release System for Risperidone Using Polypyrrole: Mechanistic Studies. Electroanalysis, 2010, 22, 439-444.	2.9	46
108	Theories of polyaniline nanostructure self-assembly: Towards an expanded, comprehensive Multi-Layer Theory (MLT). Progress in Polymer Science, 2010, 35, 1403-1419.	24.7	153

#	Article	IF	CITATIONS
109	Synthesis of Poly(3,4â€ethylenedioxythiophene) Hollow Spheres in CTAB/DBS — Mixed Surfactant Solutions. Macromolecular Symposia, 2010, 290, 107-114.	0.7	10
110	Role of Aniline Oligomeric Nanosheets in the Formation of Polyaniline Nanotubes. Macromolecules, 2010, 43, 662-670.	4.8	155
111	The actuation behavior and stability of <i>p</i> â€ŧoluene sulfonate doped polypyrrole films formed at different deposition current densities. Journal of Applied Polymer Science, 2009, 111, 876-882.	2.6	4
112	Structural Changes in Polyaniline upon Reaction with DPPH. E-Journal of Surface Science and Nanotechnology, 2009, 7, 269-272.	0.4	8
113	Polyaniline "Nanotube―Selfâ€Assembly: The Stage of Granular Agglomeration on Nanorod Templates. Macromolecular Rapid Communications, 2009, 30, 1663-1668.	3.9	44
114	Self-Assembly of Poly(<i>o</i> -methoxyaniline) Hollow Microspheres. Journal of Physical Chemistry C, 2009, 113, 9128-9134.	3.1	36
115	Simple Aqueous Solution Route to Luminescent Carbogenic Dots from Carbohydrates. Chemistry of Materials, 2009, 21, 5563-5565.	6.7	770
116	Morphological Evolution of Self-Assembled Polyaniline Nanostuctures Obtained by pH-stat Chemical Oxidation. Chemistry of Materials, 2009, 21, 954-962.	6.7	101
117	Selfâ€Assembled Hollow Polyaniline/Au Nanospheres Obtained by a One‣tep Synthesis. Macromolecular Rapid Communications, 2008, 29, 598-603.	3.9	46
118	Self-Assembled, Nanostructured Aniline Oxidation Products: A Structural Investigation. Macromolecules, 2008, 41, 3125-3135.	4.8	106
119	Conjugated polymers as novel electrochemical and optical DNA sensors. , 2008, , .		0
120	DNA Sensors based on Conducting Polymers Functionalized with Conjugated Side Chain. , 2007, , .		3
121	Novel Conducting Polymers for DNA Sensing. Macromolecules, 2007, 40, 909-914.	4.8	101
122	Polymeric Acid Doped Polyaniline Nanotubes for Oligonucleotide Sensors. Electroanalysis, 2007, 19, 870-875.	2.9	72
123	Characterization of Polyaniline Nanotubes Formed in the Presence of Amino Acids. Macromolecular Chemistry and Physics, 2007, 208, 1210-1217.	2.2	75
124	Studies of dopant effects in poly(3,4-ethylenedi-oxythiophene) using Raman spectroscopy. Journal of Raman Spectroscopy, 2006, 37, 1354-1361.	2.5	197
125	A Novel Electrochemically Switchable Conductive Polymer Interface for Controlled Capture and Release of Chemical and Biological Entities. Advanced Materials Interfaces, 0, , 2102475.	3.7	4