
Jo Anne S Stratton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2971942/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Adult Neural Precursor Cells from the Subventricular Zone Contribute Significantly to Oligodendrocyte Regeneration and Remyelination. Journal of Neuroscience, 2014, 34, 14128-14146.	1.7	215
2	Macrophages Regulate Schwann Cell Maturation after Nerve Injury. Cell Reports, 2018, 24, 2561-2572.e6.	2.9	142
3	Single-Cell Transcriptomics and Fate Mapping of Ependymal Cells Reveals an Absence of Neural Stem Cell Function. Cell, 2018, 173, 1045-1057.e9.	13.5	139
4	Microglia response following acute demyelination is heterogeneous and limits infiltrating macrophage dispersion. Science Advances, 2020, 6, eaay6324.	4.7	130
5	Distinct Regulatory Programs Control the Latent Regenerative Potential of Dermal Fibroblasts during Wound Healing. Cell Stem Cell, 2020, 27, 396-412.e6.	5.2	120
6	Myelinogenic Plasticity of Oligodendrocyte Precursor Cells following Spinal Cord Contusion Injury. Journal of Neuroscience, 2017, 37, 8635-8654.	1.7	104
7	Targeted Ablation of Oligodendrocytes Induces Axonal Pathology Independent of Overt Demyelination. Journal of Neuroscience, 2012, 32, 8317-8330.	1.7	97
8	Microglial pannexin-1 channel activation is a spinal determinant of joint pain. Science Advances, 2018, 4, eaas9846.	4.7	73
9	Macrophage polarization in nerve injury: do Schwann cells play a role?. Neural Regeneration Research, 2016, 11, 53.	1.6	64
10	Dysfunction of Hair Follicle Mesenchymal Progenitors Contributes to Age-Associated Hair Loss. Developmental Cell, 2020, 53, 185-198.e7.	3.1	56
11	The role of glial cells in multiple sclerosis disease progression. Nature Reviews Neurology, 2022, 18, 237-248.	4.9	53
12	Purification and Characterization of Schwann Cells from Adult Human Skin and Nerve. ENeuro, 2017, 4, ENEURO.0307-16.2017.	0.9	49
13	Macrophages Promote Wound-Induced Hair Follicle Regeneration in a CX3CR1- and TGF-β1–Dependent Manner. Journal of Investigative Dermatology, 2018, 138, 2111-2122.	0.3	48
14	Developmental trajectory of oligodendrocyte progenitor cells in the human brain revealed by single cell RNA sequencing. Glia, 2020, 68, 1291-1303.	2.5	44
15	Temporal Analysis of Gene Expression in the Murine Schwann Cell Lineage and the Acutely Injured Postnatal Nerve. PLoS ONE, 2016, 11, e0153256.	1.1	41
16	The immunomodulatory properties of adult skinâ€derived precursor <scp>S</scp> chwann cells: implications for peripheral nerve injury therapy. European Journal of Neuroscience, 2016, 43, 365-375.	1.2	37
17	Midbrain organoids with an <i>SNCA</i> gene triplication model key features of synucleinopathy. Brain Communications, 2021, 3, fcab223.	1.5	37
18	Cage-lid hanging behavior as a translationally relevant measure of pain in mice. Pain, 2021, 162, 1416-1425.	2.0	35

JO ANNE S STRATTON

#	Article	IF	CITATIONS
19	AlphaB-crystallin regulates remyelination after peripheral nerve injury. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E1707-E1716.	3.3	32
20	Single Cell Transcriptomics of Ependymal Cells Across Age, Region and Species Reveals Cilia-Related and Metal Ion Regulatory Roles as Major Conserved Ependymal Cell Functions. Frontiers in Cellular Neuroscience, 2021, 15, 703951.	1.8	31
21	MicroRNA-210 regulates the metabolic and inflammatory status of primary human astrocytes. Journal of Neuroinflammation, 2022, 19, 10.	3.1	26
22	Profiling Chromatin Accessibility at Single-cell Resolution. Genomics, Proteomics and Bioinformatics, 2021, 19, 172-190.	3.0	18
23	Age-related injury responses of human oligodendrocytes to metabolic insults: link to BCL-2 and autophagy pathways. Communications Biology, 2021, 4, 20.	2.0	17
24	Macrophages and Associated Ligands in the Aged Injured Nerve: A Defective Dynamic That Contributes to Reduced Axonal Regrowth. Frontiers in Aging Neuroscience, 2020, 12, 174.	1.7	12
25	A tale of two cousins: Ependymal cells, quiescent neural stem cells and potential mechanisms driving their functional divergence. FEBS Journal, 2019, 286, 3110-3116.	2.2	11
26	Ependymal cells and multiple sclerosis: proposing a relationship. Neural Regeneration Research, 2020, 15, 263.	1.6	10
27	Human Oligodendrocyte Myelination Potential; Relation to Age and Differentiation. Annals of Neurology, 2022, 91, 178-191.	2.8	9
28	Diverse injury responses of human oligodendrocyte to mediators implicated in multiple sclerosis. Brain, 2022, 145, 4320-4333.	3.7	9
29	Regional and ageâ€related diversity of human mature oligodendrocytes. Glia, 2022, 70, 1938-1949.	2.5	9
30	Serum-free bioprocessing of adult human and rodent skin-derived Schwann cells: implications for cell therapy in nervous system injury. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 3385-3397.	1.3	8
31	A novel approach to 32-channel peripheral nervous system myelin imaging in vivo, with single axon resolution. Journal of Neurosurgery, 2018, 130, 163-171.	0.9	7
32	Contact-Dependent Granzyme B-Mediated Cytotoxicity of Th17-Polarized Cells Toward Human Oligodendrocytes. Frontiers in Immunology, 2022, 13, 850616.	2.2	7
33	Droplet Barcoding-Based Single Cell Transcriptomics of Adult Mammalian Tissues. Journal of Visualized Experiments, 2019, , .	0.2	4
34	Factors Within the Endoneurial Microenvironment Act to Suppress Tumorigenesis of MPNST. Frontiers in Cellular Neuroscience, 2018, 12, 356.	1.8	3
35	Spectral Characterization of Stem Cell-Derived Myelination within the Injured Adult PNS Using the Solvatochromic Dye Nile Red. Cells, 2020, 9, 189.	1.8	0