
Laetitia Fouillen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2971849/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	2-D Structure of the A Region of Xist RNA and Its Implication for PRC2 Association. PLoS Biology, 2010, 8, e1000276.	5.6	212
2	Specific Membrane Lipid Composition Is Important for Plasmodesmata Function in Arabidopsis. Plant Cell, 2015, 27, 1228-1250.	6.6	173
3	Revisiting Plant Plasma Membrane Lipids in Tobacco: A Focus on Sphingolipids. Plant Physiology, 2016, 170, 367-384.	4.8	137
4	A Combinatorial Lipid Code Shapes the Electrostatic Landscape of Plant Endomembranes. Developmental Cell, 2018, 45, 465-480.e11.	7.0	128
5	Fragile X Mental Retardation Protein (FMRP) controls diacylglycerol kinase activity in neurons. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E3619-28.	7.1	79
6	Biosynthesis and Functions of Very-Long-Chain Fatty Acids in the Responses of Plants to Abiotic and Biotic Stresses. Cells, 2021, 10, 1284.	4.1	79
7	Comparative Characterization of Phosphatidic Acid Sensors and Their Localization during Frustrated Phagocytosis. Journal of Biological Chemistry, 2017, 292, 4266-4279.	3.4	78
8	Proteomic Analysis of Lipid Droplets from Arabidopsis Aging Leaves Brings New Insight into Their Biogenesis and Functions. Frontiers in Plant Science, 2017, 8, 894.	3.6	78
9	Modelling central metabolic fluxes by constraintâ€based optimization reveals metabolic reprogramming of developing <i>Solanum lycopersicum</i> (tomato) fruit. Plant Journal, 2015, 81, 24-39.	5.7	76
10	Ral GTPases promote breast cancer metastasis by controlling biogenesis and organ targeting of exosomes. ELife, 2021, 10, .	6.0	70
11	The histone subcode: poly(ADPâ€ribose) polymeraseâ€1 (Parpâ€1) and Parpâ€2 control cell differentiation by regulating the transcriptional intermediary factor TIF1β and the heterochromatin protein HPlα. FASEB Journal, 2008, 22, 3853-3865.	0.5	59
12	Combination of lipid metabolism alterations and their sensitivity to inflammatory cytokines in human lipin-1-deficient myoblasts. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 2103-2114.	3.8	50
13	Identification of protein partners of the human immunodeficiency virus 1 <i>tat</i> / <i>rev</i> exon 3 leads to the discovery of a new HIV-1 splicing regulator, protein hnRNP K. RNA Biology, 2011, 8, 325-342.	3.1	39
14	High Identification Rates of Endogenous Neuropeptides from Mouse Brain. Journal of Proteome Research, 2012, 11, 2819-2827.	3.7	36
15	Biomass composition explains fruit relative growth rate and discriminates climacteric from non-climacteric species. Journal of Experimental Botany, 2020, 71, 5823-5836.	4.8	35
16	Primary Fatty Alcohols Are Major Components of Suberized Root Tissues of Arabidopsis in the Form of Alkyl Hydroxycinnamates. Plant Physiology, 2016, 171, 1934-1950.	4.8	34
17	Lipid Composition of Multilamellar Bodies Secreted by Dictyostelium discoideum Reveals Their Amoebal Origin. Eukaryotic Cell, 2013, 12, 1326-1334.	3.4	28
18	Triacylglycerol Storage in Lipid Droplets in Procyclic Trypanosoma brucei. PLoS ONE, 2014, 9, e114628.	2.5	28

LAETITIA FOUILLEN

#	Article	IF	CITATIONS
19	Extensive Characterization of <i>Tupaia belangeri</i> Neuropeptidome Using an Integrated Mass Spectrometric Approach. Journal of Proteome Research, 2012, 11, 886-896.	3.7	27
20	De novo biosynthesis of sterols and fatty acids in the Trypanosoma brucei procyclic form: Carbon source preferences and metabolic flux redistributions. PLoS Pathogens, 2018, 14, e1007116.	4.7	27
21	Sphingolipids mediate polar sorting of PIN2 through phosphoinositide consumption at the trans-Golgi network. Nature Communications, 2021, 12, 4267.	12.8	25
22	Mono- and Poly-unsaturated Phosphatidic Acid Regulate Distinct Steps of Regulated Exocytosis in Neuroendocrine Cells. Cell Reports, 2020, 32, 108026.	6.4	24
23	Biophysical analysis of the plant-specific GIPC sphingolipids reveals multiple modes of membrane regulation. Journal of Biological Chemistry, 2021, 296, 100602.	3.4	24
24	CYP2U1 activity is altered by missense mutations in hereditary spastic paraplegia 56. Human Mutation, 2018, 39, 140-151.	2.5	19
25	The odd one out: Arabidopsis reticulon 20 does not bend ER membranes but has a role in lipid regulation. Scientific Reports, 2018, 8, 2310.	3.3	18
26	Improving lipid mapping in Genome Scale Metabolic Networks using ontologies. Metabolomics, 2020, 16, 44.	3.0	17
27	Neuropeptide alterations in the tree shrew hypothalamus during volatile anesthesia. Journal of Proteomics, 2013, 80, 311-319.	2.4	16
28	ER Membrane Lipid Composition and Metabolism: Lipidomic Analysis. Methods in Molecular Biology, 2018, 1691, 125-137.	0.9	16
29	Chromogranin A preferential interaction with Golgi phosphatidic acid induces membrane deformation and contributes to secretory granule biogenesis. FASEB Journal, 2020, 34, 6769-6790.	0.5	16
30	Phospholipid biosynthesis increases in RHD3-defective mutants. Plant Signaling and Behavior, 2014, 9, e29657.	2.4	13
31	Requirement of Phosphoinositides Containing Stearic Acid To Control Cell Polarity. Molecular and Cellular Biology, 2016, 36, 765-780.	2.3	13
32	Homodimerization of the Death-Associated Protein Kinase Catalytic Domain: Development of a New Small Molecule Fluorescent Reporter. PLoS ONE, 2010, 5, e14120.	2.5	12
33	The Safety Limits Of An Extended Fast: Lessons from a Non-Model Organism. Scientific Reports, 2016, 6, 39008.	3.3	10
34	Cytotoxic activity of Nep1â€like proteins on monocots. New Phytologist, 2022, 235, 690-700.	7.3	9
35	Sphingolipids are involved in insect egg-induced cell death in Arabidopsis. Plant Physiology, 2022, 189, 2535-2553.	4.8	6
36	Analysis of recombinant phosphoprotein complexes with complementary mass spectrometry approaches. Analytical Biochemistry, 2010, 407, 34-43.	2.4	5

LAETITIA FOUILLEN

#	Article	IF	CITATIONS
37	Different species of phosphatidic acid are produced during neuronal growth and neurosecretion. OCL - Oilseeds and Fats, Crops and Lipids, 2018, 25, D408.	1.4	4
38	Immunopurification of Intact Endosomal Compartments for Lipid Analyses in Arabidopsis. Methods in Molecular Biology, 2020, 2177, 119-141.	0.9	4
39	The Lipid World Concept of Plant Lipidomics. Advances in Botanical Research, 2013, , 331-376.	1.1	2
40	Phosphoinositides containing stearic acid are required for interaction between Rho <scp>GTPases</scp> and the exocyst to control the late steps of polarized exocytosis. Traffic, 2022, 23, 120-136.	2.7	2
41	Isolation of Plasmodesmata Membranes for Lipidomic and Proteomic Analysis. Methods in Molecular Biology, 2022, 2457, 189-207.	0.9	1
42	A Lipidomics Approach to Measure Phosphatidic Acid Species in Subcellular Membrane Fractions Obtained from Cultured Cells. Bio-protocol, 2021, 11, e4066.	0.4	0
43	Mono- and Polyunsaturated Phosphatidic Acid Regulate Distinct Steps of Regulated Exocytosis in Neuroendocrine Cells. SSRN Electronic Journal, 0, , .	0.4	0