
Aleksandra Cvetanović

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/297143/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Antioxidant and biological activity of chamomile extracts obtained by different techniques: perspective of using superheated water for isolation of biologically active compounds. Industrial Crops and Products, 2015, 65, 582-591.	2.5	89
2	Isolation of apigenin from subcritical water extracts: Optimization of the process. Journal of Supercritical Fluids, 2017, 120, 32-42.	1.6	70
3	The influence of the extraction temperature on polyphenolic profiles and bioactivity of chamomile (Matricaria chamomilla L.) subcritical water extracts. Food Chemistry, 2019, 271, 328-337.	4.2	68
4	Recovery of Î ² -carotene from pumpkin using switchable natural deep eutectic solvents. Ultrasonics Sonochemistry, 2021, 76, 105638.	3.8	65
5	Chemical composition of stinging nettle leaves obtained by different analytical approaches. Journal of Functional Foods, 2017, 32, 18-26.	1.6	56
6	Characterisation of ginger extracts obtained by subcritical water. Journal of Supercritical Fluids, 2017, 123, 92-100.	1.6	52
7	Chemical and biological screening of stinging nettle leaves extracts obtained by modern extraction techniques. Industrial Crops and Products, 2017, 108, 423-430.	2.5	50
8	Summer savory extracts prepared by novel extraction methods resulted in enhanced biological activity. Industrial Crops and Products, 2017, 109, 875-881.	2.5	46
9	Supercritical fluid extraction of coriander seeds: Process optimization, chemical profile and antioxidant activity of lipid extracts. Industrial Crops and Products, 2016, 94, 353-362.	2.5	44
10	Comparative in vitro studies of the biological potential and chemical composition of stems, leaves and berries Aronia melanocarpa's extracts obtained by subcritical water extraction. Food and Chemical Toxicology, 2018, 121, 458-466.	1.8	44
11	Subcritical water extraction as a cutting edge technology for the extraction of bioactive compounds from chamomile: Influence of pressure on chemical composition and bioactivity of extracts. Food Chemistry, 2018, 266, 389-396.	4.2	44
12	Microwaveâ€assisted extraction of phenolic compounds from <scp><i>Morus nigra</i></scp> leaves: optimization and characterization of the antioxidant activity and phenolic composition. Journal of Chemical Technology and Biotechnology, 2018, 93, 1684-1693.	1.6	35
13	Comparative analysis of antioxidant, antimicrobiological and cytotoxic activities of native and fermented chamomile ligulate flower extracts. Planta, 2015, 242, 721-732.	1.6	34
14	Bioactive compounds of sweet and sour cherry stems obtained by subcritical water extraction. Journal of Chemical Technology and Biotechnology, 2018, 93, 1627-1635.	1.6	32
15	Chemical and biological insights on aronia stems extracts obtained by different extraction techniques: From wastes to functional products. Journal of Supercritical Fluids, 2017, 128, 173-181.	1.6	31
16	Application of conventional and non-conventional extraction approaches for extraction of Erica carnea L.: Chemical profile and biological activity of obtained extracts. Journal of Supercritical Fluids, 2017, 128, 331-337.	1.6	29
17	Optimization of Maceration Conditions for Improving the Extraction of Phenolic Compounds and Antioxidant Effects of <i>Momordica Charantia</i> L. Leaves Through Response Surface Methodology (RSM) and Artificial Neural Networks (ANNs). Analytical Letters, 2019, 52, 2150-2163.	1.0	29
18	Biological activity and chemical profile of Lavatera thuringiaca L. extracts obtained by different extraction approaches. Phytomedicine, 2018, 38, 118-124.	2.3	25

#	Article	IF	CITATIONS
19	Metabolomic profile of Salvia viridis L. root extracts using HPLC–MS/MS technique and their pharmacological properties: A comparative study. Industrial Crops and Products, 2019, 131, 266-280.	2.5	23
20	Chemical composition and bio-functional perspectives of Erica arborea L. extracts obtained by different extraction techniques: Innovative insights. Industrial Crops and Products, 2019, 142, 111843.	2.5	21
21	Influence of different extraction techniques on the chemical profile and biological properties of Anthemis cotula L.: Multifunctional aspects for potential pharmaceutical applications. Journal of Pharmaceutical and Biomedical Analysis, 2019, 173, 75-85.	1.4	20
22	Phytochemical analysis and biological activity of Lupinus luteus seeds extracts obtained by supercritical fluid extraction. Phytochemistry Letters, 2019, 30, 338-348.	0.6	18
23	UHPLC-LTQ OrbiTrap MS analysis and biological properties of Origanum vulgare subsp. viridulum obtained by different extraction methods. Industrial Crops and Products, 2020, 154, 112747.	2.5	18
24	Modern and traditional extraction techniques affect chemical composition and bioactivity of Tanacetum parthenium (L.) Sch.Bip. Industrial Crops and Products, 2020, 146, 112202.	2.5	18
25	A new source for developing multiâ€functional products: biological and chemical perspectives on subcritical water extracts of <i>Sambucus ebulus</i> L Journal of Chemical Technology and Biotechnology, 2018, 93, 1097-1104.	1.6	14
26	A comparative exploration of the phytochemical profiles and bio-pharmaceutical potential of Helichrysum stoechas subsp. barrelieri extracts obtained via five extraction techniques. Process Biochemistry, 2020, 91, 113-125.	1.8	14
27	Optimization of the Extraction Process of Antioxidants from Orange Using Response Surface Methodology. Food Analytical Methods, 2016, 9, 1436-1443.	1.3	12
28	Optimization of the extraction process of antioxidants from loquat leaves using response surface methodology. Journal of Food Processing and Preservation, 2017, 41, e13185.	0.9	12
29	Functional coffee substitute prepared from ginger by subcritical water. Journal of Supercritical Fluids, 2017, 128, 32-38.	1.6	11
30	Chemical and bioactivity screening of subcritical water extracts of chokeberry (Aronia melanocarpa) stems. Journal of Pharmaceutical and Biomedical Analysis, 2019, 164, 353-359.	1.4	10
31	Simultaneous dispersive liquid-liquid microextraction derivatisation and gas chromatography mass spectrometry analysis of subcritical water extracts of sweet and sour cherry stems. Analytical and Bioanalytical Chemistry, 2018, 410, 1943-1953.	1.9	8
32	Extractions Without Organic Solvents: Advantages and Disadvantages. Chemistry Africa, 2019, 2, 343-349.	1.2	8
33	Tamarindus indica L. Seed: Optimization of Maceration Extraction Recovery of Tannins. Food Analytical Methods, 2020, 13, 579-590.	1.3	8
34	Effects of Orange Leaves Extraction Conditions on Antioxidant and Phenolic Content: Optimization Using Response Surface Methodology. Analytical Letters, 2018, 51, 1505-1519.	1.0	7
35	Chemical Characterization and In Vitro Bioactivity of Apple Bark Extracts Obtained by Subcritical Water. Waste and Biomass Valorization, 2021, 12, 6781-6794.	1.8	7
36	Characterization of Morus species in respect to micro, macro, and toxic elements. Acta Periodica Technologica, 2014, , 229-237.	0.5	7

#	Article	IF	CITATIONS
37	Influence of steeping time on biological activity of black mulberry leaves tea. Acta Periodica Technologica, 2016, , 177-191.	0.5	4
38	Apigenin. , 2021, , 545-562.		3
39	Sambucus ebulus L., antioxidants and potential in disease. , 2020, , 321-333.		3
40	Autofermentation of Chamomile Ligulate Flowers Promote Antitumor Effects in vitro. Acta Chimica Slovenica, 2019, 66, 560-569.	0.2	1