
Scott W Hiebert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/297134/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	MTG16 regulates colonic epithelial differentiation, colitis, and tumorigenesis by repressing E protein transcription factors. JCI Insight, 2022, 7, .	2.3	9
2	BET Inhibition Enhances the Antileukemic Activity of Low-dose Venetoclax in Acute Myeloid Leukemia. Clinical Cancer Research, 2021, 27, 598-607.	3.2	16
3	Definition of a small core transcriptional circuit regulated by AML1-ETO. Molecular Cell, 2021, 81, 530-545.e5.	4.5	45
4	Over-Generalizing About GC (Hypoxia): Pitfalls of Limiting Breadth of Experimental Systems and Analyses in Framing Informatics Conclusions. Frontiers in Immunology, 2021, 12, 664249.	2.2	8
5	A protocol for rapid degradation of endogenous transcription factors in mammalian cells and identification of direct regulatory targets. STAR Protocols, 2021, 2, 100530.	0.5	8
6	Selective Inhibition of JAK1 Primes STAT5-Driven Human Leukemia Cells for ATRA-Induced Differentiation. Targeted Oncology, 2021, 16, 663-674.	1.7	2
7	Nascent transcript and single-cell RNA-seq analysis defines the mechanism of action of the LSD1 inhibitor INCB059872 in myeloid leukemia. Gene, 2020, 752, 144758.	1.0	17
8	Targeting MYCN-expressing triple-negative breast cancer with BET and MEK inhibitors. Science Translational Medicine, 2020, 12, .	5.8	46
9	Histone deacetylase 3 controls a transcriptional network required for B cell maturation. Nucleic Acids Research, 2019, 47, 10612-10627.	6.5	14
10	Displacement of WDR5 from Chromatin by a WIN Site Inhibitor with Picomolar Affinity. Cell Reports, 2019, 26, 2916-2928.e13.	2.9	70
11	Kaiso is required for MTG16-dependent effects on colitis-associated carcinoma. Oncogene, 2019, 38, 5091-5106.	2.6	10
12	The CDK7 inhibitor THZ1 alters RNA polymerase dynamics at the 5′ and 3′ ends of genes. Nucleic Acids Research, 2019, 47, 3921-3936.	6.5	30
13	BET inhibitors reduce cell size and induce reversible cell cycle arrest in AML. Journal of Cellular Biochemistry, 2019, 120, 7309-7322.	1.2	16
14	Autofluorescence imaging identifies tumor cellâ€cycle status on a singleâ€cell level. Journal of Biophotonics, 2018, 11, e201600276.	1.1	35
15	Nascent RNA sequencing analysis provides insights into enhancer-mediated gene regulation. BMC Genomics, 2018, 19, 633.	1.2	60
16	The BET Inhibitor INCB054329 Primes AML Cells for Venetoclax-Induced Apoptosis. Blood, 2018, 132, 4074-4074.	0.6	0
17	Identification of active miRNA promoters from nuclear run-on RNA sequencing. Nucleic Acids Research, 2017, 45, e121-e121.	6.5	32
18	HDAC3 is a molecular brake of the metabolic switch supporting white adipose tissue browning. Nature Communications, 2017, 8, 93.	5.8	68

#	Article	IF	CITATIONS
19	Deacetylase activity of histone deacetylase 3 is required for productive <i>VDJ</i> recombination and B-cell development. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8608-8613.	3.3	22
20	<i>CREBBP</i> Inactivation Promotes the Development of HDAC3-Dependent Lymphomas. Cancer Discovery, 2017, 7, 38-53.	7.7	218
21	MTG16 is a tumor suppressor in colitis-associated carcinoma. JCI Insight, 2017, 2, .	2.3	6
22	Phase I trial of vorinostat added to chemoradiation with capecitabine in pancreatic cancer. Radiotherapy and Oncology, 2016, 119, 312-318.	0.3	51
23	High-Resolution Mapping of RNA Polymerases Identifies Mechanisms of Sensitivity and Resistance to BET Inhibitors in t(8;21) AML. Cell Reports, 2016, 16, 2003-2016.	2.9	69
24	Germinal centre hypoxia and regulation of antibody qualities by a hypoxia response system. Nature, 2016, 537, 234-238.	13.7	215
25	Human sterol 14α-demethylase as a target for anticancer chemotherapy: towards structure-aided drug design. Journal of Lipid Research, 2016, 57, 1552-1563.	2.0	47
26	Myc Induces miRNA-Mediated Apoptosis in Response to HDAC Inhibition in Hematologic Malignancies. Cancer Research, 2016, 76, 736-748.	0.4	46
27	The transcriptional corepressor MTGR1 regulates intestinal secretory lineage allocation. FASEB Journal, 2015, 29, 786-795.	0.2	13
28	Histone Deacetylase 3 Is Required for T Cell Maturation. Journal of Immunology, 2015, 195, 1578-1590.	0.4	47
29	Transcriptional corepressor MTG16 regulates small intestinal crypt proliferation and crypt regeneration after radiation-induced injury. American Journal of Physiology - Renal Physiology, 2015, 308, G562-G571.	1.6	20
30	Histone Deacetylase 3 Is Required for Efficient T Cell Development. Molecular and Cellular Biology, 2015, 35, 3854-3865.	1.1	44
31	Class I HDACs Affect DNA Replication, Repair, and Chromatin Structure: Implications for Cancer Therapy. Antioxidants and Redox Signaling, 2015, 23, 51-65.	2.5	44
32	High Resolution Mapping of Active RNA Polymerases Identifies KIT As a Target of BET Inhibitors in t(8;21) AML. Blood, 2015, 126, 1225-1225.	0.6	0
33	ETO family protein Mtg16 regulates the balance of dendritic cell subsets by repressing Id2. Journal of Experimental Medicine, 2014, 211, 1623-1635.	4.2	49
34	The transcriptional repressor NKAP is required for the development of iNKT cells. Nature Communications, 2013, 4, 1582.	5.8	45
35	The coactivator role of histone deacetylase 3 in IL-1-signaling involves deacetylation of p65 NF-κB. Nucleic Acids Research, 2013, 41, 90-109.	6.5	218
36	MTG16 contributes to colonic epithelial integrity in experimental colitis. Gut, 2013, 62, 1446-1455.	6.1	22

#	Article	IF	CITATIONS
37	Inhibition of Histone Deacetylase 3 Causes Replication Stress in Cutaneous T Cell Lymphoma. PLoS ONE, 2013, 8, e68915.	1.1	87
38	HDAC3 is essential for DNA replication in hematopoietic progenitor cells. Journal of Clinical Investigation, 2013, 123, 3112-3123.	3.9	70
39	Phase I trial of chemoradiation with capecitabine and vorinostat in pancreatic cancer Journal of Clinical Oncology, 2013, 31, 225-225.	0.8	3
40	Eto2/MTG16 Regulates E-Protein Activity and Subset Specification in Dendritic Cell Development. Blood, 2012, 120, 1229-1229.	0.6	3
41	Analysis of protein dynamics at active, stalled, and collapsed replication forks. Genes and Development, 2011, 25, 1320-1327.	2.7	368
42	Role for histone deacetylase 3 in maintenance of genome stability. Cell Cycle, 2011, 10, 727-728.	1.3	15
43	Mtg16/Eto2 Contributes to Murine T-Cell Development. Molecular and Cellular Biology, 2011, 31, 2544-2551.	1.1	27
44	Hdac3 Is Essential for the Maintenance of Chromatin Structure and Genome Stability. Cancer Cell, 2010, 18, 436-447.	7.7	305
45	Myeloid Translocation Gene 16 (<i>MTG16</i>) Interacts with Notch Transcription Complex Components To Integrate Notch Signaling in Hematopoietic Cell Fate Specification. Molecular and Cellular Biology, 2010, 30, 1852-1863.	1.1	27
46	Eto2/MTG16 and MTGR1 are heteromeric corepressors of the TAL1/SCL transcription factor in murine erythroid progenitors. Biochemical and Biophysical Research Communications, 2009, 390, 295-301.	1.0	25
47	Cellular stress triggers TEL nuclear export via two genetically separable pathways. Journal of Cellular Biochemistry, 2008, 104, 488-498.	1.2	14
48	Inactivation of the <i>p19</i> ^{<i>ARF</i>} tumor suppressor affects intestinal epithelial cell proliferation and integrity. Journal of Cellular Biochemistry, 2008, 104, 2228-2240.	1.2	4
49	Liver-specific deletion of histone deacetylase 3 disrupts metabolic transcriptional networks. EMBO Journal, 2008, 27, 1017-1028.	3.5	238
50	Deletion of Histone Deacetylase 3 Reveals Critical Roles in S Phase Progression and DNA Damage Control. Molecular Cell, 2008, 30, 61-72.	4.5	314
51	Myeloid Translocation Gene Family Members Associate with T-Cell Factors (TCFs) and Influence TCF-Dependent Transcription. Molecular and Cellular Biology, 2008, 28, 977-987.	1.1	43
52	Deletion of <i>Mtg16</i> , a Target of t(16;21), Alters Hematopoietic Progenitor Cell Proliferation and Lineage Allocation. Molecular and Cellular Biology, 2008, 28, 6234-6247.	1.1	69
53	Deletion of Mtgr1 Sensitizes the Colonic Epithelium to Dextran Sodium Sulfate–Induced Colitis. Gastroenterology, 2006, 131, 579-588.	0.6	27
54	RUNX1/AML1 DNA Binding Domain and ETO/MTG8 NHR2 Dimerization Domain Are Critical to AML1â^ ETO9a Leukemogenesis Blood, 2006, 108, 772-772.	0.6	1

#	Article	IF	CITATIONS
55	Translating the histone code into leukemia. Journal of Cellular Biochemistry, 2005, 96, 938-950.	1.2	57
56	Mtgr1 Is a Transcriptional Corepressor That Is Required for Maintenance of the Secretory Cell Lineage in the Small Intestine. Molecular and Cellular Biology, 2005, 25, 9576-9585.	1.1	56
57	Transcriptional Repression of the Neurofibromatosis-1 Tumor Suppressor by the t(8;21) Fusion Protein. Molecular and Cellular Biology, 2005, 25, 5869-5879.	1.1	42
58	RUNX1 Directly Regulates Band 3 Transcription Blood, 2005, 106, 1735-1735.	0.6	0
59	Mutational Analysis of the CBFβ-SMMHC Assembly Competence Domain Identifies a Surface Critical for Multimerization and Inhibition of RUNX1/AML1 Blood, 2005, 106, 2853-2853.	0.6	0
60	Role of RUNX family members in transcriptional repression and gene silencing. Oncogene, 2004, 23, 4220-4224.	2.6	160
61	Epigenetic regulation of tumor suppressors in t(8:21)-containing AML. Annals of Hematology, 2004, 83, 329-330.	0.8	6
62	Proteomic Identification of TAL1/SCL-Interacting Proteins: ETO-2 and MTGR1 Interact with TAL1 in Erythroid Progenitors Blood, 2004, 104, 357-357.	0.6	0
63	Establishment of a Retroviral Mouse Model for inv(16)-Mediated Acute Myeloid Leukemia Suggests That the p14ARF Tumor Suppressor Is a Transcriptional Target for Repression by the inv(16) Fusion Protein Blood, 2004, 104, 547-547.	0.6	0
64	Multimerization and Corepression Mediated by the CBFÎ ² -SMMHC Assembly Competence Domain Are Partially Separable and Corepression Is Required to Inhibit Core Binding Factor Activities Blood, 2004, 104, 1972-1972.	0.6	0
65	The t(8;21) fusion protein contacts co-repressors and histone deacetylases to repress the transcription of the p14ARF tumor suppressor. Blood Cells, Molecules, and Diseases, 2003, 30, 177-183.	0.6	20
66	TEL, a Putative Tumor Suppressor, Induces Apoptosis and Represses Transcription of Bcl-XL. Journal of Biological Chemistry, 2003, 278, 46378-46386.	1.6	26
67	Small ubiquitin-like modifier conjugation regulates nuclear export of TEL, a putative tumor suppressor. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 3257-3262.	3.3	107
68	The inv(16) Fusion Protein Associates with Corepressors via a Smooth Muscle Myosin Heavy-Chain Domain. Molecular and Cellular Biology, 2003, 23, 607-619.	1.1	148
69	The t(8;21) fusion protein, AML1–ETO, specifically represses the transcription of the p14ARF tumor suppressor in acute myeloid leukemia. Nature Medicine, 2002, 8, 743-750.	15.2	258
70	Mechanisms of transcriptional repression by the t(8;21)-, t(12;21)-, and inv(16)-encoded fusion proteins. Cancer Chemotherapy and Pharmacology, 2001, 48, S31-S34.	1.1	27
71	E2F-1 induces the stabilization of p53 but blocks p53-mediated transactivation. Oncogene, 2001, 20, 910-920.	2.6	38
72	TEL contacts multiple co-repressors and specifically associates with histone deacetylase-3. Oncogene, 2001, 20, 3716-3725.	2.6	87

#	Article	IF	CITATIONS
73	Bcl-2 is an apoptotic target suppressed by both c-Myc and E2F-1. Oncogene, 2001, 20, 6983-6993.	2.6	138
74	ETO, a Target of t(8;21) in Acute Leukemia, Makes Distinct Contacts with Multiple Histone Deacetylases and Binds mSin3A through Its Oligomerization Domain. Molecular and Cellular Biology, 2001, 21, 6470-6483.	1.1	316
75	Alterations in subnuclear trafficking of nuclear regulatory factors in acute leukemia. Journal of Cellular Biochemistry, 2000, 79, 93-98.	1.2	14
76	Topoisomerase IIα Mediates E2F-1-Induced Chemosensitivity and Is a Target for p53-Mediated Transcriptional Repression. Cell Biochemistry and Biophysics, 2000, 33, 199-207.	0.9	5
77	AML-1/ETO fusion protein is a dominant negative inhibitor of transcriptional repression by the promyelocytic leukemia zinc finger protein. Blood, 2000, 96, 3939-3947.	0.6	59
78	TEL, a Putative Tumor Suppressor, Modulates Cell Growth and Cell Morphology of Ras-Transformed Cells While Repressing the Transcription of stromelysin-1. Molecular and Cellular Biology, 2000, 20, 5828-5839.	1.1	96
79	The ETO Protein Disrupted in t(8;21)-Associated Acute Myeloid Leukemia Is a Corepressor for the Promyelocytic Leukemia Zinc Finger Protein. Molecular and Cellular Biology, 2000, 20, 2075-2086.	1.1	134
80	Mammalian runt-domain proteins and their roles in hematopoiesis, osteogenesis, and leukemia. Journal of Cellular Biochemistry, 1999, 75, 51-58.	1.2	100
81	Both TEL and AML-1 Contribute Repression Domains to the t(12;21) Fusion Protein. Molecular and Cellular Biology, 1999, 19, 6566-6574.	1.1	149
82	Mammalian runtâ€domain proteins and their roles in hematopoiesis, osteogenesis, and leukemia. Journal of Cellular Biochemistry, 1999, 75, 51-58.	1.2	49
83	Role of histone deacetylases in acute leukemia. , 1998, 72, 194-202.		54
84	CBFa(AML/PEBP2)-related elements in the TGF-β type I receptor promoter and expression with osteoblast differentiation. Journal of Cellular Biochemistry, 1998, 69, 353-363.	1.2	83
85	ETO, a Target of t(8;21) in Acute Leukemia, Interacts with the N-CoR and mSin3 Corepressors. Molecular and Cellular Biology, 1998, 18, 7176-7184.	1.1	417
86	The MYND Motif Is Required for Repression of Basal Transcription from the Multidrug Resistance 1 Promoter by the t(8;21) Fusion Protein. Molecular and Cellular Biology, 1998, 18, 3604-3611.	1.1	176
87	Subcellular partitioning of transcription factors during osteoblast differentiation: Developmental association of the AML/CBFα/PEBP2α-related transcription factor-NMP-2 with the nuclear matrix. Journal of Cellular Biochemistry, 1997, 66, 123-132.	1.2	33