
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2971146/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia, 2005, 145, 87-99.	0.9	2,346
2	Drought Sensitivity of the Amazon Rainforest. Science, 2009, 323, 1344-1347.	6.0	1,443
3	Long-term decline of the Amazon carbon sink. Nature, 2015, 519, 344-348.	13.7	796
4	Changes in the Carbon Balance of Tropical Forests: Evidence from Long-Term Plots. , 1998, 282, 439-442.		724
5	The regional variation of aboveground live biomass in old-growth Amazonian forests. Global Change Biology, 2006, 12, 1107-1138.	4.2	497
6	Drought–mortality relationships for tropical forests. New Phytologist, 2010, 187, 631-646.	3.5	487
7	Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate. Biogeosciences, 2012, 9, 2203-2246.	1.3	487
8	The above-ground coarse wood productivity of 104 Neotropical forest plots. Global Change Biology, 2004, 10, 563-591.	4.2	436
9	Increasing biomass in Amazonian forest plots. Philosophical Transactions of the Royal Society B: Biological Sciences, 2004, 359, 353-365.	1.8	405
10	Height-diameter allometry of tropical forest trees. Biogeosciences, 2011, 8, 1081-1106.	1.3	396
11	Tree height integrated into pantropical forest biomass estimates. Biogeosciences, 2012, 9, 3381-3403.	1.3	373
12	Pattern and process in Amazon tree turnover, 1976–2001. Philosophical Transactions of the Royal Society B: Biological Sciences, 2004, 359, 381-407.	1.8	370
13	Decomposition and carbon cycling of dead trees in tropical forests of the central Amazon. Oecologia, 2000, 122, 380-388.	0.9	360
14	Tree damage, allometric relationships, and above-ground net primary production in central Amazon forest. Forest Ecology and Management, 2001, 152, 73-84.	1.4	359
15	RESPIRATION FROM A TROPICAL FOREST ECOSYSTEM: PARTITIONING OF SOURCES AND LOW CARBON USE EFFICIENCY. , 2004, 14, 72-88.		344
16	An international network to monitor the structure, composition and dynamics of Amazonian forests (RAINFOR). Journal of Vegetation Science, 2002, 13, 439-450.	1.1	285
17	Variation in aboveground tree live biomass in a central Amazonian Forest: Effects of soil and topography. Forest Ecology and Management, 2006, 234, 85-96.	1.4	285
18	Compositional response of Amazon forests to climate change. Global Change Biology, 2019, 25, 39-56.	4.2	265

#	Article	IF	CITATIONS
19	Concerted changes in tropical forest structure and dynamics: evidence from 50 South American long-term plots. Philosophical Transactions of the Royal Society B: Biological Sciences, 2004, 359, 421-436.	1.8	250
20	Markedly divergent estimates of <scp>A</scp> mazon forest carbon density from ground plots and satellites. Global Ecology and Biogeography, 2014, 23, 935-946.	2.7	248
21	Ancient trees in Amazonia. Nature, 1998, 391, 135-136.	13.7	244
22	Long-term thermal sensitivity of Earth's tropical forests. Science, 2020, 368, 869-874.	6.0	198
23	The changing Amazon forest. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 1819-1827.	1.8	188
24	What controls tropical forest architecture? Testing environmental, structural and floristic drivers. Global Ecology and Biogeography, 2012, 21, 1179-1190.	2.7	187
25	The steady-state mosaic of disturbance and succession across an old-growth Central Amazon forest landscape. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3949-3954.	3.3	186
26	Tropical forest tree mortality, recruitment and turnover rates: calculation, interpretation and comparison when census intervals vary. Journal of Ecology, 2004, 92, 929-944.	1.9	181
27	Amazon forest carbon dynamics predicted by profiles of canopy leaf area and light environment. Ecology Letters, 2012, 15, 1406-1414.	3.0	180
28	Forest structure and carbon dynamics in Amazonian tropical rain forests. Oecologia, 2004, 140, 468-479.	0.9	157
29	Slow growth rates of Amazonian trees: Consequences for carbon cycling. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 18502-18507.	3.3	154
30	Influence of soil texture on carbon dynamics and storage potential in tropical forest soils of Amazonia. Global Biogeochemical Cycles, 2003, 17, n/a-n/a.	1.9	151
31	CHANGES IN GROWTH OF TROPICAL FORESTS: EVALUATING POTENTIAL BIASES. , 2002, 12, 576-587.		148
32	Carbon sink for a century. Nature, 2001, 410, 429-429.	13.7	140
33	Comparison of formulae for biomass content determination in a tropical rain forest site in the state of ParÃ _i , Brazil. Forest Ecology and Management, 1999, 117, 43-52.	1.4	137
34	The stable carbon and nitrogen isotopic composition of vegetation in tropical forests of the Amazon Basin, Brazil. Biogeochemistry, 2006, 79, 251-274.	1.7	134
35	Biomassa da parte aérea da vegetação da Floresta Tropical úmida de terra-firme da Amazônia Brasileira. Acta Amazonica, 1998, 28, 153-153.	0.3	129
36	Diameter increment and growth patterns for individual tree growing in Central Amazon, Brazil. Forest Ecology and Management, 2002, 166, 295-301.	1.4	124

#	Article	IF	CITATIONS
37	Response of tree biomass and wood litter to disturbance in a Central Amazon forest. Oecologia, 2004, 141, 596-611.	0.9	121
38	Widespread Amazon forest tree mortality from a single crossâ€basin squall line event. Geophysical Research Letters, 2010, 37, .	1.5	116
39	Variation in stem mortality rates determines patterns of aboveâ€ground biomass in <scp>A</scp> mazonian forests: implications for dynamic global vegetation models. Global Change Biology, 2016, 22, 3996-4013.	4.2	116
40	Species Spectral Signature: Discriminating closely related plant species in the Amazon with Near-Infrared Leaf-Spectroscopy. Forest Ecology and Management, 2013, 291, 240-248.	1.4	91
41	Analysing Amazonian forest productivity using a new individual and trait-based model (TFS v.1). Geoscientific Model Development, 2014, 7, 1251-1269.	1.3	87
42	Branch xylem density variations across the Amazon Basin. Biogeosciences, 2009, 6, 545-568.	1.3	84
43	Estimation of biomass and carbon stocks: the case of the Atlantic Forest. Biota Neotropica, 2008, 8, 21-29.	1.0	82
44	Do species traits determine patterns of wood production in Amazonian forests?. Biogeosciences, 2009, 6, 297-307.	1.3	81
45	Allometric models for estimating above- and below-ground biomass in Amazonian forests at São Gabriel da Cachoeira in the upper Rio Negro, Brazil. Forest Ecology and Management, 2012, 277, 163-172.	1.4	76
46	Large-Scale Wind Disturbances Promote Tree Diversity in a Central Amazon Forest. PLoS ONE, 2014, 9, e103711.	1.1	75
47	Does the disturbance hypothesis explain the biomass increase in basinâ€wide Amazon forest plot data?. Global Change Biology, 2009, 15, 2418-2430.	4.2	74
48	Phylogenetic diversity of Amazonian tree communities. Diversity and Distributions, 2015, 21, 1295-1307.	1.9	72
49	Variations in Amazon forest productivity correlated with foliar nutrients and modelled rates of photosynthetic carbon supply. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 3316-3329.	1.8	71
50	Highly reactive lightâ€dependent monoterpenes in the Amazon. Geophysical Research Letters, 2015, 42, 1576-1583.	1.5	71
51	Taking the pulse of Earth's tropical forests using networks of highly distributed plots. Biological Conservation, 2021, 260, 108849.	1.9	71
52	Carbon isotope discrimination in forest and pasture ecosystems of the Amazon Basin, Brazil. Global Biogeochemical Cycles, 2002, 16, 56-1-56-10.	1.9	69
53	Understanding the Influences of Spatial Patterns on N Availability Within the Brazilian Amazon Forest. Ecosystems, 2008, 11, 1234-1246.	1.6	69
54	Combustion completeness in a rainforest clearing experiment in Manaus, Brazil. Journal of Geophysical Research, 1998, 103, 13195-13199.	3.3	66

#	Article	IF	CITATIONS
55	Fast demographic traits promote high diversification rates of Amazonian trees. Ecology Letters, 2014, 17, 527-536.	3.0	63
56	Tree mode of death and mortality risk factors across Amazon forests. Nature Communications, 2020, 11, 5515.	5.8	62
57	A revised hydrological model for the Central Amazon: The importance of emergent canopy trees in the forest water budget. Agricultural and Forest Meteorology, 2017, 239, 47-57.	1.9	60
58	Dimethyl sulfide in the Amazon rain forest. Global Biogeochemical Cycles, 2015, 29, 19-32.	1.9	58
59	Logging activity and tree regeneration in an Amazonian forest. Forest Ecology and Management, 1999, 113, 67-74.	1.4	56
60	Monoterpene â€~ <i>thermometer</i> ' of tropical forestâ€∎tmosphere response to climate warming. Plant, Cell and Environment, 2017, 40, 441-452.	2.8	52
61	Detection of subpixel treefall gaps with Landsat imagery in Central Amazon forests. Remote Sensing of Environment, 2011, 115, 3322-3328.	4.6	51
62	Vulnerability of Amazon forests to storm-driven tree mortality. Environmental Research Letters, 2018, 13, 054021.	2.2	49
63	Dry and hot: the hydraulic consequences of a climate change–type drought for Amazonian trees. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20180209.	1.8	49
64	Productivity of Tropical Rain Forests. , 2001, , 401-426.		45
65	The Forest Observation System, building a global reference dataset for remote sensing of forest biomass. Scientific Data, 2019, 6, 198.	2.4	44
66	Evolutionary heritage influences Amazon tree ecology. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20161587.	1.2	43
67	Windthrows control biomass patterns and functional composition of Amazon forests. Global Change Biology, 2018, 24, 5867-5881.	4.2	43
68	Higher tree transpiration due to road-associated edge effects in a tropical moist lowland forest. Agricultural and Forest Meteorology, 2015, 213, 183-192.	1.9	42
69	Convergent evolution of tree hydraulic traits in Amazonian habitats: implications for community assemblage and vulnerability to drought. New Phytologist, 2020, 228, 106-120.	3.5	42
70	Dynamic Balancing of Isoprene Carbon Sources Reflects Photosynthetic and Photorespiratory Responses to Temperature Stress. Plant Physiology, 2014, 166, 2051-2064.	2.3	41
71	Green Leaf Volatile Emissions during High Temperature and Drought Stress in a Central Amazon Rainforest. Plants, 2015, 4, 678-690.	1.6	41
72	Influence of landscape heterogeneity on spatial patterns of wood productivity, wood specific density and above ground biomass in Amazonia. Biogeosciences, 2009, 6, 1883-1902.	1.3	40

#	Article	IF	CITATIONS
73	A tropical rainforest clearing experiment by biomass burning in the state of ParÃį, Brazil. Atmospheric Environment, 1999, 33, 1991-1998.	1.9	39
74	Hyperspectral remote detection of niche partitioning among canopy trees driven by blowdown gap disturbances in the Central Amazon. Oecologia, 2009, 160, 107-117.	0.9	39
75	Lack of intermediateâ€scale disturbance data prevents robust extrapolation of plotâ€level tree mortality rates for oldâ€growth tropical forests. Ecology Letters, 2009, 12, E22.	3.0	37
76	DINÃ,MICA E BALANÇO DO CARBONO DA VEGETAÇÃO PRIMÃRIA DA AMAZÔNIA CENTRAL. Floresta, 2004,	, 34,0.1	36
77	Revealing the causes and temporal distribution of tree mortality in Central Amazonia. Forest Ecology and Management, 2018, 424, 177-183.	1.4	36
78	Mechanical vulnerability and resistance to snapping and uprooting for Central Amazon tree species. Forest Ecology and Management, 2016, 380, 1-10.	1.4	33
79	Are compound leaves an adaptation to seasonal drought or to rapid growth? Evidence from the Amazon rain forest. Global Ecology and Biogeography, 2010, 19, 852-862.	2.7	32
80	Evolutionary diversity is associated with wood productivity in Amazonian forests. Nature Ecology and Evolution, 2019, 3, 1754-1761.	3.4	32
81	Impacts of soil compaction persist 30 years after logging operations in the Amazon Basin. Soil and Tillage Research, 2019, 189, 207-216.	2.6	32
82	Spatial trends in leaf size of Amazonian rainforest trees. Biogeosciences, 2009, 6, 1563-1576.	1.3	31
83	Methanol and isoprene emissions from the fast growing tropical pioneer species <i>Vismia guianensis</i> (Aubl.) Pers. (Hypericaceae) in the central Amazon forest. Atmospheric Chemistry and Physics, 2016, 16, 6441-6452.	1.9	31
84	Nitrogen availability patterns in white-sand vegetations of Central Brazilian Amazon. Trees - Structure and Function, 2009, 23, 479-488.	0.9	29
85	Windthrow Variability in Central Amazonia. Atmosphere, 2017, 8, 28.	1.0	29
86	Living on borrowed time – Amazonian trees use decadeâ€old storage carbon to survive for months after complete stem girdling. New Phytologist, 2018, 220, 111-120.	3.5	29
87	Long-term effect of selective logging on floristic composition: A 25†year experiment in the Brazilian Amazon. Forest Ecology and Management, 2019, 440, 258-266.	1.4	28
88	Amazon tree dominance across forest strata. Nature Ecology and Evolution, 2021, 5, 757-767.	3.4	27
89	Dynamics of Tropical Forest Twenty-Five Years after Experimental Logging in Central Amazon Mature Forest. Forests, 2019, 10, 89.	0.9	26
90	Resource availability and disturbance shape maximum tree height across the Amazon. Global Change Biology, 2021, 27, 177-189.	4.2	26

#	Article	IF	CITATIONS
91	Natural recovery of skid trails: a review. Canadian Journal of Forest Research, 2021, 51, 948-961.	0.8	26
92	Projeção da dinâmica da floresta natural de Terra-firme, região de Manaus-AM, com o uso da cadeia de transição probabilÃstica de Markov. Acta Amazonica, 2007, 37, 377-384.	0.3	25
93	Spatial distribution and functional significance of leaf lamina shape in Amazonian forest trees. Biogeosciences, 2009, 6, 1577-1590.	1.3	25
94	Seasonal variations in the stable oxygen isotope ratio of wood cellulose reveal annual rings of trees in a Central Amazon terra firme forest. Oecologia, 2016, 180, 685-696.	0.9	25
95	Integration of C1 and C2 Metabolism in Trees. International Journal of Molecular Sciences, 2017, 18, 2045.	1.8	25
96	Illegal Selective Logging and Forest Fires in the Northern Brazilian Amazon. Forests, 2019, 10, 61.	0.9	24
97	Logging On in the Rain Forests. , 1998, 281, 1453b-1453.		24
98	Bacia 3 - Inventário Florestal Comercial. Acta Amazonica, 1985, 15, 327-370.	0.3	24
99	The Central Amazon Biomass Sink Under Current and Future Atmospheric CO ₂ : Predictions From Bigâ€Leaf and Demographic Vegetation Models. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JG005500.	1.3	23
100	Forest response to increased disturbance in the central Amazon and comparison to western Amazonian forests. Biogeosciences, 2014, 11, 5773-5794.	1.3	22
101	Windthrows increase soil carbon stocks in a central Amazon forest. Biogeosciences, 2016, 13, 1299-1308.	1.3	22
102	Critical wind speeds suggest wind could be an important disturbance agent in Amazonian forests. Forestry, 2019, 92, 444-459.	1.2	21
103	Leaf isoprene and monoterpene emission distribution across hyperdominant tree genera in the Amazon basin. Phytochemistry, 2020, 175, 112366.	1.4	21
104	Stimulation of isoprene emissions and electron transport rates as key mechanisms of thermal tolerance in the tropical species <i>Vismia guianensis</i> . Global Change Biology, 2020, 26, 5928-5941.	4.2	20
105	Effects of sustainable forest management on tree diversity, timber volumes, and carbon stocks in an ecotone forest in the northern Brazilian Amazon. Land Use Policy, 2022, 119, 106145.	2.5	20
106	The production, storage, and flow of carbon in Amazonian forests. Geophysical Monograph Series, 2009, , 355-372.	0.1	19
107	Recognizing Amazonian tree species in the field using bark tissues spectra. Forest Ecology and Management, 2018, 427, 296-304.	1.4	19
108	Análise da estrutura e do estoque de fitomassa de uma floresta secundária da região de Manaus AM, dez anos apÃ3s corte raso seguido de fogo. Acta Amazonica, 2007, 37, 49-53.	0.3	18

#	Article	IF	CITATIONS
109	Allometric Equations for Estimating Biomass of Euterpe precatoria, the Most Abundant Palm Species in the Amazon. Forests, 2015, 6, 450-463.	0.9	17
110	Predicting biomass of hyperdiverse and structurally complex central Amazonian forests – a virtual approach using extensive field data. Biogeosciences, 2016, 13, 1553-1570.	1.3	17
111	Species-Specific Shifts in Diurnal Sap Velocity Dynamics and Hysteretic Behavior of Ecophysiological Variables During the 2015–2016 El Niño Event in the Amazon Forest. Frontiers in Plant Science, 2019, 10, 830.	1.7	17
112	Tamanho de parcela amostral para inventários florestais Acta Amazonica, 1982, 12, 91-103.	0.3	17
113	Water table depth modulates productivity and biomass across Amazonian forests. Global Ecology and Biogeography, 2022, 31, 1571-1588.	2.7	17
114	The effects of selective logging on the lizards Kentropyx calcarata, Ameiva ameiva and Mabuya nigropunctata. Amphibia - Reptilia, 2001, 22, 209-216.	0.1	16
115	Changes in Amazonian forest biomass, dynamics, and composition, 1980–2002. Geophysical Monograph Series, 2009, , 373-387.	0.1	16
116	Using radiocarbon-calibrated dendrochronology to improve tree-cutting cycle estimates for timber management in southern Amazon forests. Trees - Structure and Function, 2018, 32, 587-602.	0.9	15
117	DO PALM WATER USE CHARACTERISTICS EXPLAIN THE SPATIAL DISTRIBUTION OF PALMS IN THE CENTRAL AMAZON?. Acta Horticulturae, 2013, , 197-204.	0.1	14
118	Ecological applications of differences in the hydraulic efficiency of palms and broad-leaved trees. Trees - Structure and Function, 2015, 29, 1431-1445.	0.9	14
119	Below versus above Ground Plant Sources of Abscisic Acid (ABA) at the Heart of Tropical Forest Response to Warming. International Journal of Molecular Sciences, 2018, 19, 2023.	1.8	14
120	Bacia 3- Inventário diagnóstico da regeneração natural (*). Acta Amazonica, 1985, 15, 199-234.	0.3	14
121	A FLORESTA AMAZÔNICA E A ÃGUA DA CHUVA. Floresta, 2011, 41, .	0.1	13
122	Tropical forest carbon balance: effects of field- and satellite-based mortality regimes on the dynamics and the spatial structure of Central Amazon forest biomass. Environmental Research Letters, 2014, 9, 034010.	2.2	13
123	A new 500-m resolution map of canopy height for Amazon forest using spaceborne LiDAR and cloud-free MODIS imagery. International Journal of Applied Earth Observation and Geoinformation, 2015, 43, 92-101.	1.4	13
124	Impacts to soil properties still evident 27Âyears after abandonment in Amazonian log landings. Forest Ecology and Management, 2022, 510, 120105.	1.4	13
125	Effect of selective logging intensity on two termite species of the genus Syntermes in Central Amazonia. Forest Ecology and Management, 2000, 137, 151-154.	1.4	12
126	Examination of Vertical Distribution of Fine Root Biomass in a Tropical Moist Forest of the Central Amazon, Brazil. Japan Agricultural Research Quarterly, 2014, 48, 231-235.	0.1	12

#	Article	IF	CITATIONS
127	Relevance of wood anatomy and size of Amazonian trees in the determination and allometry of sapwood area. Acta Amazonica, 2019, 49, 1-10.	0.3	12
128	Modelagem do rendimento no desdobro de toras de Manilkara spp. (Sapotaceae) em serraria do estado de Roraima, Brasil. Scientia Forestalis/Forest Sciences, 2016, 44, .	0.2	12
129	Variation in nitrogen use strategies and photosynthetic pathways among vascular epiphytes in the Brazilian Central Amazon. Revista Brasileira De Botanica, 2011, 34, 21-30.	0.5	11
130	Recent Changes in Amazon Forest Biomass and Dynamics. Ecological Studies, 2016, , 191-224.	0.4	11
131	Blowdown disturbance effect on the density, richness and species composition of the seed bank in Central Amazonia. Forest Ecology and Management, 2019, 453, 117633.	1.4	11
132	An Assessment of Soil Compaction after Logging Operations in Central Amazonia. Forest Science, 2020, 66, 230-241.	0.5	11
133	Allometry for Juvenile Trees in an Amazonian Forest after Wind Disturbance. Japan Agricultural Research Quarterly, 2014, 48, 213-219.	0.1	10
134	Calibration, measurement, and characterization of soil moisture dynamics in a central Amazonian tropical forest. Vadose Zone Journal, 2020, 19, e20070.	1.3	10
135	Uso de banda dendrométrica na definição de padrões de crescimento individual em diâmetro de árvores da bacia do rio Cuieiras. Acta Amazonica, 2003, 33, 67-84.	0.3	10
136	Produtividade de quatro espécies arbóreas de Terra Firme da Amazônia Central. Acta Amazonica, 2009, 39, 105-112.	0.3	10
137	INFLUÊNCIA DO TAMANHO DA PARCELA NA PRECISÃO DA FUNÇÃO DE DISTRIBUIÇÃO DIAMÉTRICA DE WEIBULL NA FLORESTA PRIMÃRIA DA AMAZÔNIA CENTRAL. Floresta, 2012, 42, 599.	0.1	9
138	Tree Climbing Techniques and Volume Equations for Eschweilera (Matá-Matá), a Hyperdominant Genus in the Amazon Forest. Forests, 2017, 8, 154.	0.9	9
139	Litter and soil biogeochemical parameters as indicators of sustainable logging in Central Amazonia. Science of the Total Environment, 2020, 714, 136780.	3.9	9
140	Modeling Potential Impacts of Planting Palms or Tree in Small Holder Fruit Plantations on Ecohydrological Processes in the Central Amazon. Forests, 2015, 6, 2530-2544.	0.9	8
141	Volatile monoterpene â€~fingerprints' of resinous Protium tree species in the Amazon rainforest. Phytochemistry, 2019, 160, 61-70.	1.4	8
142	TABELAS DE VOLUME PARA A FLORESTA DE TERRA FIRME DA ESTAÇÃO EXPERIMENTAL DE SILVICULTURA TROPICAL. Acta Amazonica, 1983, 13, 537-545.	0.3	8
143	Recovery of above-ground tree biomass after moderate selective logging in a central Amazonian forest. IForest, 2018, 11, 352-359.	0.5	8
144	Incremento, ingresso e mortalidade em uma floresta de contato ombrófila aberta/estacional em Marcelândia, Estado do Mato Grosso. Acta Amazonica, 2010, 40, 549-555.	0.3	7

#	Article	IF	CITATIONS
145	Significance of Topographic Gradient in Stem Diameter - Height Allometry for Precise Biomass Estimation of a Tropical Moist Forest in the Central Amazon. Japan Agricultural Research Quarterly, 2013, 47, 109-114.	0.1	7
146	Spatial distribution of six managed tree species is influenced by topography conditions in the Central Amazon. Journal of Environmental Management, 2021, 281, 111835.	3.8	7
147	Relação da produção de serapilheira com incremento em diâmetro de uma floresta madura na Amazônia Central. Scientia Forestalis/Forest Sciences, 2016, 44, .	0.2	7
148	Regeneration of five commercially-valuable tree species after experimental logging in an Amazonian forest. Revista Arvore, 2002, 26, 567-571.	0.5	6
149	The stable carbon and nitrogen isotopic composition of vegetation in tropical forests of the Amazon Basin, Brazil. , 2006, , 251-274.		6
150	Does soil pyrogenic carbon determine plant functional traits in Amazon Basin forests?. Plant Ecology, 2017, 218, 1047-1062.	0.7	5
151	Soil moisture thresholds explain a shift from light-limited to water-limited sap velocity in the Central Amazon during the 2015–16 El Niño drought. Environmental Research Letters, 2022, 17, 064023.	2.2	5
152	Overview of Forest Carbon Stocks Study in Amazonas State, Brazil. Ecological Studies, 2016, , 171-187.	0.4	4
153	Allometric equations for total, above- and below-ground biomass and carbon of the Amazonian forest type known as campinarana. Acta Amazonica, 2018, 48, 85-92.	0.3	4
154	Dry Season Transpiration and Soil Water Dynamics in the Central Amazon. Frontiers in Plant Science, 2022, 13, 825097.	1.7	4
155	A growth and yield projection system for a tropical rainforest in the Central Amazon, Brazil. Forest Ecology and Management, 2014, 327, 201-208.	1.4	3
156	Partitioning of Environmental and Taxonomic Controls on Brazilian Foliar Content of Carbon and Nitrogen and Stable Isotopes. Frontiers in Forests and Global Change, 2021, 4, .	1.0	3
157	Canopy Position Influences the Degree of Light Suppression of Leaf Respiration in Abundant Tree Genera in the Amazon Forest. Frontiers in Forests and Clobal Change, 2021, 4, .	1.0	3
158	Estimating Amazon carbon stock using AI-based remote sensing. Communications of the ACM, 2020, 63, 46-48.	3.3	3
159	Environmental Thermal Conditions Related to Performance, Dynamics and Safety of Logging in the Brazilian Amazon. Croatian Journal of Forest Engineering, 2021, 42, .	1.0	2
160	Changes in Forest Structure and Biomass over Ten Years in a Lowland Amazonian Forest. Japan Agricultural Research Quarterly, 2016, 50, 379-386.	0.1	2
161	Fine root biomass in a tropical moist forest in the upper Negro River basin, Brazilian Amazon. Tropics, 2014, 22, 179-183.	0.2	2
162	Stem respiration and growth in a central Amazon rainforest. Trees - Structure and Function, 2022, 36, 991-1004.	0.9	2

#	Article	IF	CITATIONS
163	Correction to "Influence of soil texture on carbon dynamics and storage potential in tropical forest soils of Amazonia― Global Biogeochemical Cycles, 2004, 18, n/a-n/a.	1.9	1
164	Relating Amazon forest biomass to PolInSAR extracted features. , 2013, , .		1
165	USING DIAMETER VARIATION INDEX OF PIONEER SPECIES FOR CLASSIFICATION AND MODELING TROPICAL FOREST YIELD. BIOFIX Scientific Journal, 2016, 1, .	0.1	1
166	Caracterização das madeiras denominadas de pau-de-escora comercializadas na cidade de Manaus, Amazonas. Cerne, 2012, 18, 557-563.	0.9	1
167	Diurnal Pattern of Leaf, Flower and Fruit Specific Ambient Volatiles above an Oil Palm Plantation in ParÃ _i State, Brazil. Journal of the Brazilian Chemical Society, 2016, , .	0.6	1
168	Demonstration of a Strict Molecular Oxygen Requirement of Yellow Latex Oxidation in the Central Amazon Canopy Tree Muiratinga (Maquira sclerophylla (Ducke) C.C. Berg). Revista Virtual De Quimica, 2018, 10, 1316-1326.	0.1	1
169	Qualifying the Information Detected from Airborne Laser Scanning to Support Tropical Forest Management Operational Planning. Forests, 2021, 12, 1724.	0.9	1
170	Carbon stock and dynamics in a managed forest in Central Amazon. Scientia Forestalis/Forest Sciences, 2018, 46, .	0.2	0