

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2969894/publications.pdf Version: 2024-02-01

XIAOLI

#	Article	IF	CITATIONS
1	Embedded bioprinting for designer 3D tissue constructs with complex structural organization. Acta Biomaterialia, 2022, 140, 1-22.	8.3	35
2	Deciphering Fluid Transport Within Leafâ€Inspired Capillary Networks Based on a 3D Computational Model. Small, 2022, 18, e2108102.	10.0	3
3	Nanocrown electrodes for parallel and robust intracellular recording of cardiomyocytes. Nature Communications, 2022, 13, 2253.	12.8	25
4	Membrane curvature regulates the spatial distribution of bulky glycoproteins. Nature Communications, 2022, 13, .	12.8	19
5	Enhancing the performance of paper-based electrochemical impedance spectroscopy nanobiosensors: An experimental approach. Biosensors and Bioelectronics, 2021, 177, 112672.	10.1	100
6	Vertical nanostructures for probing live cells. , 2021, , 43-70.		2
7	Coaxial Electrohydrodynamic Bioprinting of Pre-vascularized Cell-laden Constructs for Tissue Engineering. International Journal of Bioprinting, 2021, 7, 362.	3.4	13
8	Nanoscale Surface Topography Reduces Focal Adhesions and Cell Stiffness by Enhancing Integrin Endocytosis. Nano Letters, 2021, 21, 8518-8526.	9.1	34
9	Advanced biofabrication strategies for biomimetic composite scaffolds to regenerate ligamentâ€bone interface. Biosurface and Biotribology, 2021, 7, 187-205.	1.5	2
10	A thread-based wearable sweat nanobiosensor. Biosensors and Bioelectronics, 2021, 188, 113270.	10.1	58
11	Bioprinting of 3D Functional Tissue Constructs. International Journal of Bioprinting, 2021, 7, 395.	3.4	0
12	Dynamic Manipulation of Cell Membrane Curvature by Light-Driven Reshaping of Azopolymer. Nano Letters, 2020, 20, 577-584.	9.1	29
13	Electric field simulation of Ag nanoparticles induced by Femtosecond laser in welding process. Ferroelectrics, 2020, 563, 1-11.	0.6	0
14	In situ three-dimensional laser machining system integrating in situ measurement, reconstruction, parameterization, and texture mapping. International Journal of Advanced Manufacturing Technology, 2020, 111, 673-684.	3.0	2
15	Molecular dynamics simulation of thermal welding morphology of Ag/Au/Cu nanoparticles distributed on Si substrates. Ferroelectrics, 2020, 564, 19-27.	0.6	3
16	Molecular dynamics simulation of thermal welding process of Ag nanoparticles. Ferroelectrics, 2020, 564, 102-112.	0.6	0
17	Thermal Field Simulation of Ag Nanoparticles Induced by Femtosecond Laser. Integrated Ferroelectrics, 2020, 208, 128-137.	0.7	1
18	Membrane curvature underlies actin reorganization in response to nanoscale surface topography. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 23143-23151.	7.1	147

Χιλό Γι

#	Article	IF	CITATIONS
19	A paper-based microfluidic platform with shape-memory-polymer-actuated fluid valves for automated multi-step immunoassays. Microsystems and Nanoengineering, 2019, 5, 50.	7.0	49
20	A nanostructure platform for live-cell manipulation of membrane curvature. Nature Protocols, 2019, 14, 1772-1802.	12.0	78
21	A Systematic Study of Cell Mechanics and Function Modulated by Nanotopography. Biophysical Journal, 2019, 116, 375a.	0.5	0
22	Leaf-templated, microwell-integrated microfluidic chips for high-throughput cell experiments. Biofabrication, 2018, 10, 025008.	7.1	18
23	Advanced Material Strategies for Next-Generation Additive Manufacturing. Materials, 2018, 11, 166.	2.9	76
24	A Paper-Based Piezoelectric Accelerometer. Micromachines, 2018, 9, 19.	2.9	50
25	Cells Adhering to 3D Vertical Nanostructures: Cell Membrane Reshaping without Stable Internalization. Nano Letters, 2018, 18, 6100-6105.	9.1	73
26	Group III nitride nanomaterials for biosensing. Nanoscale, 2017, 9, 7320-7341.	5.6	51
27	Quantitative analysis and predictive engineering of self-rolling of nanomembranes under anisotropic mismatch strain. Nanotechnology, 2017, 28, 485302.	2.6	13
28	The Emerging Frontiers and Applications of High-Resolution 3D Printing. Micromachines, 2017, 8, 113.	2.9	151
29	Development of a Robotic Arm Based Hydrogel Additive Manufacturing System for In-Situ Printing. Applied Sciences (Switzerland), 2017, 7, 73.	2.5	41
30	Additive Manufacturing of Biomedical Constructs with Biomimetic Structural Organizations. Materials, 2016, 9, 909.	2.9	23
31	Corrections to "Controllable Hydrothermal Growth of ZnO Nanowires on Cellulose Paper for Flexible Sensors and Electronics―[Nov 15 6100-6107]. IEEE Sensors Journal, 2016, 16, 6142-6142.	4.7	0
32	Microfluidicsâ€Based Biosensors: A Microfluidic Paperâ€Based Origami Nanobiosensor for Labelâ€Free, Ultrasensitive Immunoassays (Adv. Healthcare Mater. 11/2016). Advanced Healthcare Materials, 2016, 5, 1378-1378.	7.6	6
33	Micro/nanoscale electrohydrodynamic printing: from 2D to 3D. Nanoscale, 2016, 8, 15376-15388.	5.6	136
34	A Microfluidic Paperâ€Based Origami Nanobiosensor for Labelâ€Free, Ultrasensitive Immunoassays. Advanced Healthcare Materials, 2016, 5, 1326-1335.	7.6	69
35	A paper-based microfluidic biosensor integrating zinc oxide nanowires for electrochemical glucose detection. Microsystems and Nanoengineering, 2015, 1, .	7.0	131
36	An electrochemical microfluidic paper-based glucose sensor integrating zinc oxide nanowires. , 2015, ,		1

Χίλο Li

#	Article	IF	CITATIONS
37	Controllable Hydrothermal Growth of ZnO Nanowires on Cellulose Paper for Flexible Sensors and Electronics. IEEE Sensors Journal, 2015, 15, 6100-6107.	4.7	21
38	NUMERICAL SIMULATION OF HEMODYNAMICS IN PORTAL VEIN WITH THROMBOSIS BY COMPUTATIONAL FLUID DYNAMICS. Journal of Mechanics in Medicine and Biology, 2014, 14, 1440006.	0.7	6
39	Paper-Based Piezoelectric Touch Pads with Hydrothermally Grown Zinc Oxide Nanowires. ACS Applied Materials & Interfaces, 2014, 6, 22004-22012.	8.0	53
40	Hydrothermal growth of ZnO nanowires on paper for flexible electronics. , 2014, , .		1
41	Fabrication of three-dimensional microfluidic channels in a single layer of cellulose paper. Microfluidics and Nanofluidics, 2014, 16, 819-827.	2.2	77
42	A paper-based piezoelectric touch pad integrating zinc oxide nanowires. , 2014, , .		2
43	Magnetic timing valves for fluid control in paper-based microfluidics. Lab on A Chip, 2013, 13, 2609.	6.0	131
44	Biomaterial scaffolds with biomimetic fluidic channels for hepatocyte culture. Journal of Bionic Engineering, 2013, 10, 57-64.	5.0	8
45	The fabrication and cell culture of three-dimensional rolled scaffolds with complex micro-architectures. Biofabrication, 2012, 4, 015004.	7.1	20
46	Ice-template-induced silk fibroin–chitosan scaffolds with predefined microfluidic channels and fully porous structures. Acta Biomaterialia, 2012, 8, 2175-2184.	8.3	38
47	COMPUTATIONAL FLUID DYNAMICS FOR TISSUE ENGINEERING APPLICATIONS. Journal of Mechanics in Medicine and Biology, 2011, 11, 307-323.	0.7	8