Bin Xiao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2969813/publications.pdf

Version: 2024-02-01

		117625	106344
62	5,086	34	65
papers	citations	h-index	g-index
65	65	65	4358
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Alkylâ€GeMe ₃ : Neutral Metalloid Radical Precursors upon Visibleâ€Light Photocatalysis. Angewandte Chemie - International Edition, 2022, 61, .	13.8	31
2	Alkylâ€GeMe ₃ : Neutral Metalloid Radical Precursors upon Visibleâ€Light Photocatalysis. Angewandte Chemie, 2022, 134, .	2.0	1
3	Copper Promoted Synthesis of Tetraalkylgermanes from Germanium Electrophiles and Alkyl Bromides [※] . Acta Chimica Sinica, 2022, 80, 428.	1.4	1
4	Tertiary cyclopropyl carbagermatranes: synthesis and cross-coupling. Chemical Communications, 2021, 57, 8143-8146.	4.1	14
5	Alkylcarbagermatranes Permit an Alkylation-Terminated Catellani Reaction. Synlett, 2021, 32, 1049-1052.	1.8	15
6	Alkyl Carbagermatrane Enabled Synthesis of Seven-Membered Carbocycle-Fused Aromatics through Catellani Strategy. Synthesis, 2021, 53, 2819-2827.	2.3	3
7	Synthesis of Dialkyl-Substituted Monofluoroalkenes via Palladium-Catalyzed Cross-Coupling of Alkyl Carbagermatranes. Organic Letters, 2021, 23, 4593-4597.	4.6	17
8	Germatranes and carbagermatranes: (hetero)aryl and alkyl coupling partners in Pd-catalyzed cross-coupling reactions. Chemical Communications, 2021, 57, 11764-11775.	4.1	32
9	Zn-mediated decarboxylative carbagermatranation of aliphatic <i>N</i> -hydroxyphthalimide esters: evidence for an alkylzinc intermediate. Chemical Science, 2020, 11, 488-493.	7.4	29
10	Alkylationâ€Terminated Catellani Reactions Using Alkyl Carbagermatranes. Angewandte Chemie, 2020, 132, 20630-20634.	2.0	6
11	Alkylationâ€Terminated Catellani Reactions Using Alkyl Carbagermatranes. Angewandte Chemie - International Edition, 2020, 59, 20450-20454.	13.8	39
12	Synthesis and Application of Heterocyclic Germatranes via Rhodiumâ€Catalyzed Directed Câ^'H Activation/Annulation with Alkynyl Germatranes and Palladiumâ€Catalyzed Crossâ€Coupling. Advanced Synthesis and Catalysis, 2020, 362, 1706-1711.	4.3	17
13	The New Salicylaldehyde <i>S</i> , <i>S</i> -Propanedithioacetal Ester Enables N-to-C Sequential Native Chemical Ligation and Ser/Thr Ligation for Chemical Protein Synthesis. Journal of the American Chemical Society, 2020, 142, 8790-8799.	13.7	33
14	Epoxyâ€Based Ceramicâ€Polymer Composite with Excellent Millimeterâ€Wave Broadband Absorption Properties by Facile Approach. Advanced Engineering Materials, 2019, 21, 1900981.	3.5	9
15	Vicinal Diboration of Alkyl Bromides via Tandem Catalysis. Organic Letters, 2019, 21, 4298-4302.	4.6	13
16	Synthesis of Conjugated Boronâ€Enynes via cis―Alkynylboration of Terminal Alkynes. Advanced Synthesis and Catalysis, 2019, 361, 3937-3942.	4.3	13
17	Alkyl Carbagermatranes Enable Practical Palladium-Catalyzed sp ² –sp ³ Cross-Coupling. Journal of the American Chemical Society, 2019, 141, 7582-7588.	13.7	72
18	Free Radical Pathway Cleavage of C—O Bonds for the Synthesis of Alkylboron Compounds. Chinese Journal of Chemistry, 2019, 37, 11-18.	4.9	30

#	Article	IF	CITATIONS
19	Exploration of Biaryl Carboxylic Acids as Proton Shuttles for the Selective Functionalization of Indole C–H Bonds. Journal of Organic Chemistry, 2018, 83, 5791-5800.	3.2	9
20	Rhodium(III)-Catalyzed Directed C–H Coupling with Methyl Trifluoroacrylate: Diverse Synthesis of Fluoroalkenes and Heterocycles. Organic Letters, 2018, 20, 570-573.	4.6	48
21	Structure-Modified Germatranes for Pd-Catalyzed Biaryl Synthesis. ACS Catalysis, 2018, 8, 9287-9291.	11.2	51
22	Copper-Catalyzed Reagent-Controlled Regioselective Cyanoborylation of Vinylarenes. Organic Letters, 2018, 20, 5208-5212.	4.6	24
23	Copper-catalyzed propargylation of diborylmethane. Chemical Communications, 2017, 53, 3551-3554.	4.1	34
24	Copper-catalyzed/mediated borylation reactions of epoxides with diboron reagents: access to \hat{l}^2 -hydroxyl boronic esters. Chemical Communications, 2017, 53, 909-912.	4.1	17
25	Copperâ€Catalyzed Alkynylboration of Alkenes with Diboron Reagents and Bromoalkynes. Chemistry - an Asian Journal, 2017, 12, 2884-2888.	3.3	34
26	Nickel-Catalyzed Defluorinative Reductive Cross-Coupling of <i>gem</i> -Difluoroalkenes with Unactivated Secondary and Tertiary Alkyl Halides. Journal of the American Chemical Society, 2017, 139, 12632-12637.	13.7	214
27	Nickel-catalyzed synthesis of $1,1$ -diborylalkanes from terminal alkenes. Nature Communications, 2017, 8, 345.	12.8	110
28	Formation of C(sp ³)–C(sp ³) Bonds through Nickelâ€Catalyzed Decarboxylative Olefin Hydroalkylation Reactions. Chemistry - A European Journal, 2016, 22, 11161-11164.	3.3	60
29	Cu/Fe Catalyzed Intermolecular Oxidative Amination of Benzylic Câ^'H Bonds. Chemistry - A European Journal, 2016, 22, 6208-6212.	3.3	41
30	Pd-catalyzed cross-coupling of 1,1-diborylalkanes with aryl triflates. RSC Advances, 2016, 6, 51932-51935.	3.6	28
31	Palladium-catalyzed directing group-assisted C8-triflation of naphthalenes. Chemical Communications, 2016, 52, 6709-6711.	4.1	17
32	Ligand-Controlled Regiodivergent Copper-Catalyzed Alkylboration of Unactivated Terminal Alkynes. ACS Catalysis, 2016, 6, 6417-6421.	11.2	84
33	Directing Group in Decarboxylative Cross-Coupling: Copper-Catalyzed Site-Selective C–N Bond Formation from Nonactivated Aliphatic Carboxylic Acids. Journal of the American Chemical Society, 2016, 138, 9714-9719.	13.7	72
34	Atomically Dispersed Ru on Ultrathin Pd Nanoribbons. Journal of the American Chemical Society, 2016, 138, 13850-13853.	13.7	132
35	Practical carbon–carbon bond formation from olefins through nickel-catalyzed reductive olefin hydrocarbonation. Nature Communications, 2016, 7, 11129.	12.8	221
36	Synthesis of unnatural amino acids through palladium-catalyzed C(sp3)H functionalization. Chinese Chemical Letters, 2016, 27, 305-311.	9.0	75

#	Article	IF	CITATIONS
37	Copper-Catalyzed S _N 2′-Selective Allylic Substitution Reaction of <i>yem</i> -Diborylalkanes. Organic Letters, 2016, 18, 952-955.	4.6	81
38	Copper-catalyzed cross-coupling reactions of epoxides with gem-diborylmethane: access to \hat{I}^3 -hydroxyl boronic esters. Chemical Communications, 2016, 52, 4891-4893.	4.1	70
39	Synthesis of 1,6-hexanediol from HMF over double-layered catalysts of Pd/SiO ₂ + Ir–ReO _x /SiO ₂ in a fixed-bed reactor. Green Chemistry, 2016, 18, 2175-2184.	9.0	127
40	Unprecedented copper-mediated oxidative demethylation of propionamides via bidentate-chelation assistance. Chemical Communications, 2016, 52, 1242-1245.	4.1	5
41	Pdâ€Catalyzed Regioselective Activation of <i>gem</i> â€Difluorinated Cyclopropanes: A Highly Efficient Approach to 2â€Fluorinated Allylic Scaffolds. Angewandte Chemie - International Edition, 2015, 54, 8231-8235.	13.8	111
42	Ligandâ€Controlled Regiodivergent Copperâ€Catalyzed Alkylboration of Alkenes. Angewandte Chemie - International Edition, 2015, 54, 12957-12961.	13.8	164
43	Pdâ€Catalyzed Regioselective Activation of <i>gem</i> â€Difluorinated Cyclopropanes: A Highly Efficient Approach to 2â€Fluorinated Allylic Scaffolds. Angewandte Chemie, 2015, 127, 8349-8353.	2.0	20
44	Rhodium(<scp>iii</scp>)-catalyzed cyanation of vinylic C–H bonds: N-cyano-N-phenyl-p-toluenesulfonamide as a cyanation reagent. Chemical Communications, 2015, 51, 11848-11851.	4.1	51
45	Cu-Catalyzed cross-coupling reactions of epoxides with organoboron compounds. Chemical Communications, 2015, 51, 2388-2391.	4.1	36
46	Copper-Catalyzed/Promoted Cross-coupling of <i>gem</i> -Diborylalkanes with Nonactivated Primary Alkyl Halides: An Alternative Route to Alkylboronic Esters. Organic Letters, 2014, 16, 6342-6345.	4.6	147
47	Rh(III)-Catalyzed C–H Activation with Allenes To Synthesize Conjugated Olefins. Organic Letters, 2014, 16, 330-333.	4.6	69
48	Cu-Catalyzed Suzuki–Miyaura reactions of primary and secondary benzyl halides with arylboronates. Chemical Communications, 2014, 50, 11060-11062.	4.1	76
49	Copperâ€Catalyzed Reductive Crossâ€Coupling of Nonactivated Alkyl Tosylates and Mesylates with Alkyl and Aryl Bromides. Chemistry - A European Journal, 2014, 20, 15334-15338.	3.3	95
50	Expedient Synthesis of Chiral αâ€Amino Acids through Nickelâ€Catalyzed Reductive Crossâ€Coupling. Chemistry - A European Journal, 2014, 20, 15339-15343.	3.3	39
51	Rhodium-Catalyzed Directed C–H Cyanation of Arenes with <i>N-</i> Cyano- <i>N</i> -phenyl- <i>p</i> -toluenesulfonamide. Journal of the American Chemical Society, 2013, 135, 10630-10633.	13.7	233
52	Nickelâ€Catalyzed Sonogashira Reactions of Nonâ€activated Secondary Alkyl Bromides and Iodides. Angewandte Chemie - International Edition, 2013, 52, 12409-12413.	13.8	125
53	Palladium-Catalyzed C–H Activation/Cross-Coupling of Pyridine <i>N</i> Oxides with Nonactivated Secondary Alkyl Bromides. Journal of the American Chemical Society, 2013, 135, 616-619.	13.7	242
54	Palladium-catalyzed monoselective C–H borylation of acetanilides under acidic conditions. Chemical Communications, 2012, 48, 4854.	4.1	58

#	Article	IF	CITATIONS
55	Growth, structure and spectral properties of Cr3+-doped LiMgAl(MoO4)3 crystals with a disordered structure. RSC Advances, 2012, 2, 5271.	3.6	12
56	Growth, Structure and Spectroscopic Characterization of Nd3+-Doped KBaGd(WO4)3 Crystal with a Disordered Structure. PLoS ONE, 2012, 7, e40229.	2.5	14
57	Growth, Thermal and Spectral Properties of Er3+-Doped and Er3+/Yb3+-Codoped Li3Ba2La3(WO4)8 Crystals. PLoS ONE, 2012, 7, e40631.	2.5	9
58	Rhodium-Catalyzed Selective C–H Activation/Olefination of Phenol Carbamates. Organic Letters, 2011, 13, 3235-3237.	4.6	190
59	Palladium-Catalyzed Intermolecular Directed Câ^'H Amidation of Aromatic Ketones. Journal of the American Chemical Society, 2011, 133, 1466-1474.	13.7	350
60	Synthesis of Dibenzofurans via Palladium-Catalyzed Phenol-Directed C–H Activation/C–O Cyclization. Journal of the American Chemical Society, 2011, 133, 9250-9253.	13.7	308
61	Copper-Catalyzed Trifluoromethylation of Terminal Alkenes through Allylic C–H Bond Activation. Journal of the American Chemical Society, 2011, 133, 15300-15303.	13.7	351
62	Pd(II)-Catalyzed Câ^'H Activation/Arylâ^'Aryl Coupling of Phenol Esters. Journal of the American Chemical Society, 2010, 132, 468-469.	13.7	354