

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2969438/publications.pdf

ΙΙΤΑΝ

#	Article	IF	CITATIONS
1	SOX17 and PAX8 constitute an actionable lineage-survival transcriptional complex in ovarian cancer. Oncogene, 2022, 41, 1767-1779.	5.9	11
2	A Novel Formula Comprising Wolfberry, Figs, White Lentils, Raspberries, and Maca (WFWRM) Induced Antifatigue Effects in a Forced Exercise Mouse Model. Evidence-based Complementary and Alternative Medicine, 2022, 2022, 1-12.	1.2	1
3	Therapeutic targeting of the mevalonate–geranylgeranyl diphosphate pathway with statins overcomes chemotherapy resistance in small cell lung cancer. Nature Cancer, 2022, 3, 614-628.	13.2	14
4	Regulation of the intestinal flora: A potential mechanism of natural medicines in the treatment of type 2 diabetes mellitus. Biomedicine and Pharmacotherapy, 2022, 151, 113091.	5.6	11
5	Baseline immunity and impact of chemotherapy on immune microenvironment in cervical cancer. British Journal of Cancer, 2021, 124, 414-424.	6.4	38
6	Generation of a chemical genetic model for JAK3. Scientific Reports, 2021, 11, 10093.	3.3	5
7	Development of potent and selective inhibitors targeting the papain-like protease of SARS-CoV-2. Cell Chemical Biology, 2021, 28, 855-865.e9.	5.2	67
8	The HCK/BTK inhibitor KIN-8194 is active in MYD88-driven lymphomas and overcomes mutated BTKCys481 ibrutinib resistance. Blood, 2021, 138, 1966-1979.	1.4	16
9	Discovery of a cooperative mode of inhibiting RIPK1 kinase. Cell Discovery, 2021, 7, 41.	6.7	14
10	Multiregion whole-genome sequencing depicts intratumour heterogeneity and punctuated evolution in ovarian clear cell carcinoma. Journal of Medical Genetics, 2020, 57, 605-609.	3.2	13
11	Hsp40 proteins phase separate to chaperone the assembly and maintenance of membraneless organelles. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 31123-31133.	7.1	66
12	Mapping the Degradable Kinome Provides a Resource for Expedited Degrader Development. Cell, 2020, 183, 1714-1731.e10.	28.9	163
13	Catalytic Domain Plasticity of MKK7 Reveals Structural Mechanisms of Allosteric Activation and Diverse Targeting Opportunities. Cell Chemical Biology, 2020, 27, 1285-1295.e4.	5.2	19
14	Modulating TRADD to restore cellular homeostasis and inhibit apoptosis. Nature, 2020, 587, 133-138.	27.8	57
15	Identification of a potent and selective covalent Pin1 inhibitor. Nature Chemical Biology, 2020, 16, 979-987.	8.0	40
16	Identification and characterization of N9-methyltransferase involved in converting caffeine into non-stimulatory theacrine in tea. Nature Communications, 2020, 11, 1473.	12.8	27
17	Tâ€cell exhaustion interrelates with immune cytolytic activity to shape the inflamed tumor microenvironment. Journal of Pathology, 2020, 251, 147-159.	4.5	25
18	Quinolone antibiotic derivatives as new selective Axl kinase inhibitors. European Journal of Medicinal Chemistry, 2019, 166, 318-327.	5.5	21

Li Tan

#	Article	IF	CITATIONS
19	Leveraging Compound Promiscuity to Identify Targetable Cysteines within the Kinome. Cell Chemical Biology, 2019, 26, 818-829.e9.	5.2	43
20	RAS–MAPK Reactivation Facilitates Acquired Resistance in <i>FGFR1</i> -Amplified Lung Cancer and Underlies a Rationale for Upfront FGFR–MEK Blockade. Molecular Cancer Therapeutics, 2018, 17, 1526-1539.	4.1	39
21	Chemically Induced Degradation of Anaplastic Lymphoma Kinase (ALK). Journal of Medicinal Chemistry, 2018, 61, 4249-4255.	6.4	141
22	Suppression of Adaptive Responses to Targeted Cancer Therapy by Transcriptional Repression. Cancer Discovery, 2018, 8, 59-73.	9.4	96
23	A Chemoproteomic Approach to Query the Degradable Kinome Using a Multi-kinase Degrader. Cell Chemical Biology, 2018, 25, 88-99.e6.	5.2	313
24	Selective Inhibition of the Myeloid Src-Family Kinase Fgr Potently Suppresses AML Cell Growth <i>in Vitro</i> and <i>in Vivo</i> . ACS Chemical Biology, 2018, 13, 1551-1559.	3.4	34
25	When Kinases Meet PROTACs. Chinese Journal of Chemistry, 2018, 36, 971-977.	4.9	27
26	Arsenic targets Pin1 and cooperates with retinoic acid to inhibit cancer-driving pathways and tumor-initiating cells. Nature Communications, 2018, 9, 3069.	12.8	116
27	A Novel HCK Inhibitor Kin-8193 Blocks BTK Activity in BTKCys481 Mutated Ibrutinib Resistant B-Cell Lymphomas Driven By Mutated MYD88. Blood, 2018, 132, 40-40.	1.4	9
28	Structure-guided development of covalent TAK1 inhibitors. Bioorganic and Medicinal Chemistry, 2017, 25, 838-846.	3.0	28
29	Studies of TAK1-centered polypharmacology with novel covalent TAK1 inhibitors. Bioorganic and Medicinal Chemistry, 2017, 25, 1320-1328.	3.0	17
30	Determination of A Novel Selective B-RafV600E Inhibitor (LXK4) in Dog Plasma by HPLC–MS/MS and its Application in a Pharmacokinetic Study. Chromatographia, 2017, 80, 71-76.	1.3	0
31	Synergistic interactions with PI3K inhibition that induce apoptosis. ELife, 2017, 6, .	6.0	25
32	Dual inhibition of Fes and Flt3 tyrosine kinases potently inhibits Flt3-ITD+ AML cell growth. PLoS ONE, 2017, 12, e0181178.	2.5	15
33	Covalent Targeting of Fibroblast Growth Factor Receptor Inhibits Metastatic Breast Cancer. Molecular Cancer Therapeutics, 2016, 15, 2096-2106.	4.1	61
34	4-Oxo-1,4-dihydroquinoline-3-carboxamide Derivatives as New Axl Kinase Inhibitors. Journal of Medicinal Chemistry, 2016, 59, 6807-6825.	6.4	46
35	Design and synthesis of N -(4-aminopyridin-2-yl)amides as B-Raf V600E inhibitors. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 2760-2763.	2.2	7
36	HCK is a survival determinant transactivated by mutated MYD88, and a direct target of ibrutinib. Blood, 2016, 127, 3237-3252.	1.4	93

Li Tan

#	Article	IF	CITATIONS
37	Pathophysiological significance and therapeutic targeting of germinal center kinase in diffuse large B-cell lymphoma. Blood, 2016, 128, 239-248.	1.4	17
38	EPHA2 Blockade Overcomes Acquired Resistance to EGFR Kinase Inhibitors in Lung Cancer. Cancer Research, 2016, 76, 305-318.	0.9	98
39	Inhibition of IKKα by BAY61-3606 Reveals IKKα-Dependent Histone H3 Phosphorylation in Human Cytomegalovirus Infected Cells. PLoS ONE, 2016, 11, e0150339.	2.5	11
40	EPHA2 Is a Mediator of Vemurafenib Resistance and a Novel Therapeutic Target in Melanoma. Cancer Discovery, 2015, 5, 274-287.	9.4	107
41	Characterization of DDR2 Inhibitors for the Treatment of <i>DDR2</i> Mutated Nonsmall Cell Lung Cancer. ACS Chemical Biology, 2015, 10, 2687-2696.	3.4	43
42	Development of Selective Covalent Janus Kinase 3 Inhibitors. Journal of Medicinal Chemistry, 2015, 58, 6589-6606.	6.4	94
43	DFG-out Mode of Inhibition by an Irreversible Type-1 Inhibitor Capable of Overcoming Gate-Keeper Mutations in FGF Receptors. ACS Chemical Biology, 2015, 10, 299-309.	3.4	44
44	Ligand-associated ERBB2/3 activation confers acquired resistance to FGFR inhibition in FGFR3-dependent cancer cells. Oncogene, 2015, 34, 2167-2177.	5.9	58
45	Discovery of Type II Inhibitors of TGFβ-Activated Kinase 1 (TAK1) and Mitogen-Activated Protein Kinase Kinase Kinase Kinase 2 (MAP4K2). Journal of Medicinal Chemistry, 2015, 58, 183-196.	6.4	62
46	Targeting IRAK1/IRAK4 Signaling in Waldenstrom's Macroglobulinemia. Blood, 2015, 126, 4004-4004.	1.4	11
47	HCK Is a Highly Relevant Target of Ibrutinib in MYD88 Mutated Waldenstrom's Macroglobulinemia and Diffuse Large B-Cell Lymphoma. Blood, 2015, 126, 705-705.	1.4	3
48	Identification of Novel Small Molecule Inhibitors of Oncogenic RET Kinase. PLoS ONE, 2015, 10, e0128364.	2.5	18
49	Development of covalent inhibitors that can overcome resistance to first-generation FGFR kinase inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E4869-77.	7.1	154
50	Acquired Resistance to Dasatinib in Lung Cancer Cell Lines Conferred by <i>DDR2</i> Gatekeeper Mutation and <i>NF1</i> Loss. Molecular Cancer Therapeutics, 2014, 13, 475-482.	4.1	51
51	Correction to Discovery of a Potent and Selective DDR1 Receptor Tyrosine Kinase Inhibitor. ACS Chemical Biology, 2014, 9, 840-840.	3.4	4
52	Structural Mechanisms Determining Inhibition of the Collagen Receptor DDR1 by Selective and Multi-Targeted Type II Kinase Inhibitors. Journal of Molecular Biology, 2014, 426, 2457-2470.	4.2	77
53	Genetic and pharmacologic inhibition of EPHA2 promotes apoptosis in NSCLC. Journal of Clinical Investigation, 2014, 124, 2037-2049.	8.2	102
54	Discovery of a Potent and Selective DDR1 Receptor Tyrosine Kinase Inhibitor. ACS Chemical Biology, 2013, 8, 2145-2150.	3.4	119

Li Tan

#	Article	IF	CITATIONS
55	Germinal Center Kinase Regulates The Proliferation and Survival Of Diffuse Large B-Cell Lymphoma. Blood, 2013, 122, 643-643.	1.4	Ο
56	Essential Role for IKKÎ ² in Production of Type 1 Interferons by Plasmacytoid Dendritic Cells. Journal of Biological Chemistry, 2012, 287, 19216-19228.	3.4	39
57	Selective Aurora Kinase Inhibitors Identified Using a Taxol-Induced Checkpoint Sensitivity Screen. ACS Chemical Biology, 2012, 7, 185-196.	3.4	20
58	The IkappaB Kinase Family Phosphorylates the Parkinson's Disease Kinase LRRK2 at Ser935 and Ser910 during Toll-Like Receptor Signaling. PLoS ONE, 2012, 7, e39132.	2.5	183
59	Identification of a small molecule activator of novel PKCs for promoting glucose-dependent insulin secretion. Cell Research, 2011, 21, 588-599.	12.0	6
60	Total Synthesis of Salinamideâ€A: A Potent Antiâ€Inflammatory Bicyclic Depsipeptide. Angewandte Chemie - International Edition, 2008, 47, 3614-3617.	13.8	32
61	A novel flavonoid from Lespedeza virgata (Thunb.) DC.: Structural elucidation and antioxidative activity. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 6311-6315.	2.2	19