Li Tan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2969438/publications.pdf

Version: 2024-02-01

		159585	168389
61	3,098	30	53
papers	citations	h-index	g-index
65	65	65	5070
65	65	65	5070
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A Chemoproteomic Approach to Query the Degradable Kinome Using a Multi-kinase Degrader. Cell Chemical Biology, 2018, 25, 88-99.e6.	5.2	313
2	The IkappaB Kinase Family Phosphorylates the Parkinson's Disease Kinase LRRK2 at Ser935 and Ser910 during Toll-Like Receptor Signaling. PLoS ONE, 2012, 7, e39132.	2.5	183
3	Mapping the Degradable Kinome Provides a Resource for Expedited Degrader Development. Cell, 2020, 183, 1714-1731.e10.	28.9	163
4	Development of covalent inhibitors that can overcome resistance to first-generation FGFR kinase inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E4869-77.	7.1	154
5	Chemically Induced Degradation of Anaplastic Lymphoma Kinase (ALK). Journal of Medicinal Chemistry, 2018, 61, 4249-4255.	6.4	141
6	Discovery of a Potent and Selective DDR1 Receptor Tyrosine Kinase Inhibitor. ACS Chemical Biology, 2013, 8, 2145-2150.	3.4	119
7	Arsenic targets Pin1 and cooperates with retinoic acid to inhibit cancer-driving pathways and tumor-initiating cells. Nature Communications, 2018, 9, 3069.	12.8	116
8	EPHA2 Is a Mediator of Vemurafenib Resistance and a Novel Therapeutic Target in Melanoma. Cancer Discovery, 2015, 5, 274-287.	9.4	107
9	Genetic and pharmacologic inhibition of EPHA2 promotes apoptosis in NSCLC. Journal of Clinical Investigation, 2014, 124, 2037-2049.	8.2	102
10	EPHA2 Blockade Overcomes Acquired Resistance to EGFR Kinase Inhibitors in Lung Cancer. Cancer Research, 2016, 76, 305-318.	0.9	98
11	Suppression of Adaptive Responses to Targeted Cancer Therapy by Transcriptional Repression. Cancer Discovery, 2018, 8, 59-73.	9.4	96
12	Development of Selective Covalent Janus Kinase 3 Inhibitors. Journal of Medicinal Chemistry, 2015, 58, 6589-6606.	6.4	94
13	HCK is a survival determinant transactivated by mutated MYD88, and a direct target of ibrutinib. Blood, 2016, 127, 3237-3252.	1.4	93
14	Structural Mechanisms Determining Inhibition of the Collagen Receptor DDR1 by Selective and Multi-Targeted Type II Kinase Inhibitors. Journal of Molecular Biology, 2014, 426, 2457-2470.	4.2	77
15	Development of potent and selective inhibitors targeting the papain-like protease of SARS-CoV-2. Cell Chemical Biology, 2021, 28, 855-865.e9.	5.2	67
16	Hsp40 proteins phase separate to chaperone the assembly and maintenance of membraneless organelles. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 31123-31133.	7.1	66
17	Discovery of Type II Inhibitors of TGFÎ ² -Activated Kinase 1 (TAK1) and Mitogen-Activated Protein Kinase Kinase Kinase 2 (MAP4K2). Journal of Medicinal Chemistry, 2015, 58, 183-196.	6.4	62
18	Covalent Targeting of Fibroblast Growth Factor Receptor Inhibits Metastatic Breast Cancer. Molecular Cancer Therapeutics, 2016, 15, 2096-2106.	4.1	61

#	Article	IF	Citations
19	Ligand-associated ERBB2/3 activation confers acquired resistance to FGFR inhibition in FGFR3-dependent cancer cells. Oncogene, 2015, 34, 2167-2177.	5.9	58
20	Modulating TRADD to restore cellular homeostasis and inhibit apoptosis. Nature, 2020, 587, 133-138.	27.8	57
21	Acquired Resistance to Dasatinib in Lung Cancer Cell Lines Conferred by <i>DDR2 </i> Gatekeeper Mutation and <i>NF1 </i> Loss. Molecular Cancer Therapeutics, 2014, 13, 475-482.	4.1	51
22	4-Oxo-1,4-dihydroquinoline-3-carboxamide Derivatives as New Axl Kinase Inhibitors. Journal of Medicinal Chemistry, 2016, 59, 6807-6825.	6.4	46
23	DFG-out Mode of Inhibition by an Irreversible Type-1 Inhibitor Capable of Overcoming Gate-Keeper Mutations in FGF Receptors. ACS Chemical Biology, 2015, 10, 299-309.	3.4	44
24	Characterization of DDR2 Inhibitors for the Treatment of <i>DDR2</i> Mutated Nonsmall Cell Lung Cancer. ACS Chemical Biology, 2015, 10, 2687-2696.	3.4	43
25	Leveraging Compound Promiscuity to Identify Targetable Cysteines within the Kinome. Cell Chemical Biology, 2019, 26, 818-829.e9.	5.2	43
26	Identification of a potent and selective covalent Pin1 inhibitor. Nature Chemical Biology, 2020, 16, 979-987.	8.0	40
27	Essential Role for IKK \hat{I}^2 in Production of Type 1 Interferons by Plasmacytoid Dendritic Cells. Journal of Biological Chemistry, 2012, 287, 19216-19228.	3.4	39
28	RAS–MAPK Reactivation Facilitates Acquired Resistance in <i>FGFR1</i> -Amplified Lung Cancer and Underlies a Rationale for Upfront FGFR–MEK Blockade. Molecular Cancer Therapeutics, 2018, 17, 1526-1539.	4.1	39
29	Baseline immunity and impact of chemotherapy on immune microenvironment in cervical cancer. British Journal of Cancer, 2021, 124, 414-424.	6.4	38
30	Selective Inhibition of the Myeloid Src-Family Kinase Fgr Potently Suppresses AML Cell Growth <i>in Vitro</i> and <i>in Vivo</i> ACS Chemical Biology, 2018, 13, 1551-1559.	3.4	34
31	Total Synthesis of Salinamideâ€A: A Potent Antiâ€Inflammatory Bicyclic Depsipeptide. Angewandte Chemie - International Edition, 2008, 47, 3614-3617.	13.8	32
32	Structure-guided development of covalent TAK1 inhibitors. Bioorganic and Medicinal Chemistry, 2017, 25, 838-846.	3.0	28
33	When Kinases Meet PROTACs. Chinese Journal of Chemistry, 2018, 36, 971-977.	4.9	27
34	Identification and characterization of N9-methyltransferase involved in converting caffeine into non-stimulatory theacrine in tea. Nature Communications, 2020, 11, 1473.	12.8	27
35	Synergistic interactions with PI3K inhibition that induce apoptosis. ELife, 2017, 6, .	6.0	25
36	Tâ€cell exhaustion interrelates with immune cytolytic activity to shape the inflamed tumor microenvironment. Journal of Pathology, 2020, 251, 147-159.	4.5	25

#	Article	IF	CITATIONS
37	Quinolone antibiotic derivatives as new selective Axl kinase inhibitors. European Journal of Medicinal Chemistry, 2019, 166, 318-327.	5.5	21
38	Selective Aurora Kinase Inhibitors Identified Using a Taxol-Induced Checkpoint Sensitivity Screen. ACS Chemical Biology, 2012, 7, 185-196.	3.4	20
39	A novel flavonoid from Lespedeza virgata (Thunb.) DC.: Structural elucidation and antioxidative activity. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 6311-6315.	2.2	19
40	Catalytic Domain Plasticity of MKK7 Reveals Structural Mechanisms of Allosteric Activation and Diverse Targeting Opportunities. Cell Chemical Biology, 2020, 27, 1285-1295.e4.	5.2	19
41	Identification of Novel Small Molecule Inhibitors of Oncogenic RET Kinase. PLoS ONE, 2015, 10, e0128364.	2.5	18
42	Pathophysiological significance and therapeutic targeting of germinal center kinase in diffuse large B-cell lymphoma. Blood, 2016, 128, 239-248.	1.4	17
43	Studies of TAK1-centered polypharmacology with novel covalent TAK1 inhibitors. Bioorganic and Medicinal Chemistry, 2017, 25, 1320-1328.	3.0	17
44	The HCK/BTK inhibitor KIN-8194 is active in MYD88-driven lymphomas and overcomes mutated BTKCys481 ibrutinib resistance. Blood, 2021, 138, 1966-1979.	1.4	16
45	Dual inhibition of Fes and Flt3 tyrosine kinases potently inhibits Flt3-ITD+ AML cell growth. PLoS ONE, 2017, 12, e0181178.	2.5	15
46	Discovery of a cooperative mode of inhibiting RIPK1 kinase. Cell Discovery, 2021, 7, 41.	6.7	14
47	Therapeutic targeting of the mevalonate–geranylgeranyl diphosphate pathway with statins overcomes chemotherapy resistance in small cell lung cancer. Nature Cancer, 2022, 3, 614-628.	13.2	14
48	Multiregion whole-genome sequencing depicts intratumour heterogeneity and punctuated evolution in ovarian clear cell carcinoma. Journal of Medical Genetics, 2020, 57, 605-609.	3.2	13
49	Targeting IRAK1/IRAK4 Signaling in Waldenstrom's Macroglobulinemia. Blood, 2015, 126, 4004-4004.	1.4	11
50	Inhibition of IKKα by BAY61-3606 Reveals IKKα-Dependent Histone H3 Phosphorylation in Human Cytomegalovirus Infected Cells. PLoS ONE, 2016, 11, e0150339.	2.5	11
51	SOX17 and PAX8 constitute an actionable lineage-survival transcriptional complex in ovarian cancer. Oncogene, 2022, 41, 1767-1779.	5.9	11
52	Regulation of the intestinal flora: A potential mechanism of natural medicines in the treatment of type 2 diabetes mellitus. Biomedicine and Pharmacotherapy, 2022, 151, 113091.	5.6	11
53	A Novel HCK Inhibitor Kin-8193 Blocks BTK Activity in BTKCys481 Mutated Ibrutinib Resistant B-Cell Lymphomas Driven By Mutated MYD88. Blood, 2018, 132, 40-40.	1.4	9
54	Design and synthesis of N -(4-aminopyridin-2-yl)amides as B-Raf V600E inhibitors. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 2760-2763.	2.2	7

#	Article	IF	CITATIONS
55	Identification of a small molecule activator of novel PKCs for promoting glucose-dependent insulin secretion. Cell Research, 2011, 21, 588-599.	12.0	6
56	Generation of a chemical genetic model for JAK3. Scientific Reports, 2021, 11, 10093.	3.3	5
57	Correction to Discovery of a Potent and Selective DDR1 Receptor Tyrosine Kinase Inhibitor. ACS Chemical Biology, 2014, 9, 840-840.	3.4	4
58	HCK Is a Highly Relevant Target of Ibrutinib in MYD88 Mutated Waldenstrom's Macroglobulinemia and Diffuse Large B-Cell Lymphoma. Blood, 2015, 126, 705-705.	1.4	3
59	A Novel Formula Comprising Wolfberry, Figs, White Lentils, Raspberries, and Maca (WFWRM) Induced Antifatigue Effects in a Forced Exercise Mouse Model. Evidence-based Complementary and Alternative Medicine, 2022, 2022, 1-12.	1,2	1
60	Determination of A Novel Selective B-RafV600E Inhibitor (LXK4) in Dog Plasma by HPLC–MS/MS and its Application in a Pharmacokinetic Study. Chromatographia, 2017, 80, 71-76.	1.3	0
61	Germinal Center Kinase Regulates The Proliferation and Survival Of Diffuse Large B-Cell Lymphoma. Blood, 2013, 122, 643-643.	1.4	0