James Alexander Hutchinson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2969198/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Advanced Immune Cell Profiling by Multiparameter Flow Cytometry in Humanized Patient-Derived Tumor Mice. Cancers, 2022, 14, 2214.	1.7	5
2	Prediction of immune checkpoint blockadeâ€related hepatitis in metastatic melanoma patients. JDDG - Journal of the German Society of Dermatology, 2022, , .	0.4	1
3	Unexpectedly high seroprevalance of Kaposi's sarcoma-associated herpesvirus (HHV-8) in patients with stage IV melanoma. European Journal of Cancer, 2022, 172, 51-52.	1.3	1
4	Virus-specific memory T cell responses unmasked by immune checkpoint blockade cause hepatitis. Nature Communications, 2021, 12, 1439.	5.8	39
5	Validation of an apoptosis assay for extracorporeal photopheresis. Transfusion Medicine, 2021, 31, 113-120.	0.5	2
6	Development of a Flow Cytometry Assay to Predict Immune Checkpoint Blockade-Related Complications. Frontiers in Immunology, 2021, 12, 765644.	2.2	5
7	Negative pressure wound therapy (NPWT) on closed incisions to prevent surgical site infection in high-risk patients in hepatopancreatobiliary surgery: study protocol for a randomized controlled trial—the NP-SSI trial. Trials, 2020, 21, 918.	0.7	3
8	Bacterial contamination rates in extracorporeal photopheresis. Transfusion, 2020, 60, 1260-1266.	0.8	2
9	Myeloid-Derived Suppressor Cells in Kidney Transplant Recipients and the Effect of Maintenance Immunotherapy. Frontiers in Immunology, 2020, 11, 643.	2.2	16
10	Regulatory cell therapy in kidney transplantation (The ONE Study): a harmonised design and analysis of seven non-randomised, single-arm, phase 1/2A trials. Lancet, The, 2020, 395, 1627-1639.	6.3	266
11	C5aR1 governs Mreg migration, development, and function. American Journal of Transplantation, 2019, 19, 619-621.	2.6	1
12	Human Tolerogenic Dendritic Cells Regulate Immune Responses through Lactate Synthesis. Cell Metabolism, 2019, 30, 1075-1090.e8.	7.2	71
13	European Reflections on New Indications for Extracorporeal Photopheresis in Solid Organ Transplantation. Transplantation, 2018, 102, 1279-1283.	0.5	7
14	Generation of TIGIT+ iTregs by Human Regulatory Macrophages before Kidney Transplantation. Transplantation, 2018, 102, S17.	0.5	0
15	BTNL8 is Expressed by Human Mreg-induced FOXP3+ iTregs. Transplantation, 2018, 102, S17.	0.5	2
16	Predicting Early Viral Control under DAA Therapy for Chronic HCV Using Pretreatment Immunological Markers. Transplantation, 2018, 102, S680-S681.	0.5	0
17	Comparison of two column agglutination tests for red blood cell antibody testing. PLoS ONE, 2018, 13, e0210099.	1.1	7
18	Novel molecules mediate specialized functions of human regulatory macrophages. Current Opinion in Organ Transplantation, 2018, 23, 533-537.	0.8	12

#	Article	IF	CITATIONS
19	Subclinical T cell-mediated liver transplant rejection: The jury is still out. Journal of Hepatology, 2018, 69, 570-571.	1.8	7
20	Predicting Early Viral Control under Direct-Acting Antiviral Therapy for Chronic Hepatitis C Virus Using Pretreatment Immunological Markers. Frontiers in Immunology, 2018, 9, 146.	2.2	16
21	Postoperative cellular stress in the kidney is associated with an early systemic Î ³ δT-cell immune cell response. Critical Care, 2018, 22, 168.	2.5	12
22	TIGIT+ iTregsÂelicited by human regulatory macrophages control T cell immunity. Nature Communications, 2018, 9, 2858.	5.8	101
23	Immunological investigations empower transplant drug trials. Lancet, The, 2018, 391, 2578-2579.	6.3	3
24	DHRS9 Is a Stable Marker of Human Regulatory Macrophages. Transplantation, 2017, 101, 2731-2738.	0.5	58
25	MITAP-compliant characterization of human regulatory macrophages. Transplant International, 2017, 30, 765-775.	0.8	19
26	Tools for Predicting Kidney Transplant Outcomes. Transplantation, 2017, 101, 1958-1959.	0.5	4
27	Promote Your Work in Transplantation. Transplantation, 2017, 101, 1512-1513.	0.5	1
28	Donor-specific Anti-HLA Antibodies Present in Pooled Human Serum Do Not Prevent Development of Human Mreg_UKR From Monocytes in Culture. Transplantation, 2017, 101, e188-e190.	0.5	3
29	Novel GM-CSF signals via IFN-γR/IRF-1 and AKT/mTOR license monocytes for suppressor function. Blood Advances, 2017, 1, 947-960.	2.5	78
30	Pregnancy After Renal Transplantation. Transplantation, 2017, 101, 675-678.	0.5	16
31	Commercialization of Transplantation Research. Transplantation, 2016, 100, 964-965.	0.5	1
32	The Mononuclear Phagocyte System in Organ Transplantation. American Journal of Transplantation, 2016, 16, 1053-1069.	2.6	24
33	Age and gender leucocytes variances and references values generated using the standardized ONE‧tudy protocol. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2016, 89, 543-564.	1.1	88
34	Transplant survival: knowing the future. Lancet, The, 2016, 388, 940-941.	6.3	2
35	Early Enrichment and Restitution of the Peripheral Blood Treg Pool Is Associated With Rejection-Free Stable Immunosuppression After Liver Transplantation. Transplantation, 2016, 100, e39-e40.	0.5	7
36	Passenger Leucocyte Syndrome. Transplantation, 2016, 100, 1787-1788.	0.5	4

#	Article	IF	CITATIONS
37	Minimum information about tolerogenic antigen-presenting cells (MITAP): a first step towards reproducibility and standardisation of cellular therapies. PeerJ, 2016, 4, e2300.	0.9	55
38	Peer Review in Transplantation. Transplantation, 2015, 99, 1746-1748.	0.5	3
39	Cell-based immunosuppression in kidney transplantation: the value of non-human primate studies. Kidney International, 2015, 88, 1197.	2.6	3
40	Pharmacovigilance in Europe. Transplantation, 2015, 99, 1542-1543.	0.5	6
41	Laser Ablation Inductively Coupled Plasma Mass Spectrometry. Transplantation Direct, 2015, 1, e32.	0.8	2
42	Quantification of mRNA Expression by RT-qPCR. Transplantation, 2015, 99, 2009-2011.	0.5	2
43	Single-Cell Analysis by LA-ICP-MS. Transplantation, 2015, 99, 2237-2238.	0.5	5
44	Clinical Use of Tolerogenic Dendritic Cells-Harmonization Approach in European Collaborative Effort. Mediators of Inflammation, 2015, 2015, 1-8.	1.4	57
45	First-in-Human Case Study: Multipotent Adult Progenitor Cells for Immunomodulation After Liver Transplantation. Stem Cells Translational Medicine, 2015, 4, 899-904.	1.6	62
46	DC-SIGN+ Macrophages Control the Induction of Transplantation Tolerance. Immunity, 2015, 42, 1143-1158.	6.6	144
47	Macrophages in Transplantation. Transplantation, 2015, 99, 898-899.	0.5	9
48	Somatic Cell-based Therapy. Transplantation, 2015, 99, 1103-1105.	0.5	7
49	Flow Cytometry in Transplantation. Transplantation, 2015, 99, 1308-1309.	0.5	3
50	Now or never? The case for cell-based immunosuppression in kidney transplantation. Kidney International, 2015, 87, 1116-1124.	2.6	50
51	HLA Typing. Transplantation, 2015, 99, 6-7.	0.5	4
52	Donor Malignancies. Transplantation, 2015, 99, 270-271.	0.5	3
53	Data Sharing. Transplantation, 2015, 99, 649-650.	0.5	8
54	Minimum Information Standards. Transplantation, 2015, 99, 464-465.	0.5	5

#	Article	IF	CITATIONS
55	Hurdles in therapy with regulatory T cells. Science Translational Medicine, 2015, 7, 304ps18.	5.8	136
56	In question: the scientific value of preclinical safety pharmacology and toxicology studies with cell-based therapies. Molecular Therapy - Methods and Clinical Development, 2014, 1, 14026.	1.8	15
57	Langerhans cells promote early germinal center formation in response to <i>Leishmania</i> â€derived cutaneous antigens. European Journal of Immunology, 2014, 44, 2955-2967.	1.6	23
58	Laser Ablation–Inductively Coupled Plasma Mass Spectrometry: An Emerging Technology for Detecting Rare Cells in Tissue Sections. Journal of Immunology, 2014, 193, 2600-2608.	0.4	36
59	Clinical management of patients receiving cellâ€based immunoregulatory therapy. Transfusion, 2014, 54, 2336-2343.	0.8	18
60	IFN-γ-induced iNOS Expression in Mouse Regulatory Macrophages Prolongs Allograft Survival in Fully Immunocompetent Recipients. Molecular Therapy, 2013, 21, 409-422.	3.7	129
61	Single Cell Tracking of Gadolinium Labeled CD4 ⁺ T Cells by Laser Ablation Inductively Coupled Plasma Mass Spectrometry. Analytical Chemistry, 2013, 85, 10627-10634.	3.2	63
62	Standardization of whole blood immune phenotype monitoring for clinical trials: panels and methods from the ONE study. Transplantation Research, 2013, 2, 17.	1.5	194
63	Cell therapy as a strategy to minimize maintenance immunosuppression in solid organ transplant recipients. Current Opinion in Organ Transplantation, 2013, 18, 408-415.	0.8	37
64	Human regulatory macrophages as a cell-based medicinal product. Current Opinion in Organ Transplantation, 2012, 17, 48-54.	0.8	26
65	Regulatory macrophages as therapeutic targets and therapeutic agents in solid organ transplantation. Current Opinion in Organ Transplantation, 2012, Publish Ahead of Print, 332-42.	0.8	48
66	Alternative approaches to myeloid suppressor cell therapy in transplantation: comparing regulatory macrophages to tolerogenic DCs and MDSCs. Transplantation Research, 2012, 1, 17.	1.5	46
67	Safety and feasibility of third-party multipotent adult progenitor cells for immunomodulation therapy after liver transplantationa phase I study (MISOT-I). Journal of Translational Medicine, 2011, 9, 124.	1.8	51
68	Cutting Edge: Immunological Consequences and Trafficking of Human Regulatory Macrophages Administered to Renal Transplant Recipients. Journal of Immunology, 2011, 187, 2072-2078.	0.4	220
69	Human Regulatory Macrophages. Methods in Molecular Biology, 2010, 677, 181-192.	0.4	57
70	Postoperative intravenous infusion of donor-derived transplant acceptance-inducing cells as an adjunct immunosuppressive therapy in a porcine pulmonary allograft model. Transplant International, 2009, 22, 332-341.	0.8	19
71	Administration of donorâ€derived <i>transplant acceptanceâ€inducing cells</i> to the recipients of renal transplants from deceased donors is technically feasible. Clinical Transplantation, 2009, 23, 140-145.	0.8	27
72	A refined characterisation of the NeoHepatocyte phenotype necessitates a reappraisal of the transdifferentiation hypothesis. Differentiation, 2009, 77, 263-276.	1.0	6

#	Article	IF	CITATIONS
73	Human transplant acceptance-inducing cells suppress mitogen-stimulated T cell proliferation. Transplant Immunology, 2009, 21, 162-165.	0.6	14
74	Tracking of human cells in mice. Histochemistry and Cell Biology, 2008, 130, 329-338.	0.8	43
75	Transplant acceptance-inducing cells as an immune-conditioning therapy in renal transplantation. Transplant International, 2008, 21, 728-741.	0.8	86
76	A cell-based approach to the minimization of immunosuppression in renal transplantation. Transplant International, 2008, 21, 742-754.	0.8	85
77	Preoperative treatment of a presensitized kidney transplant recipient with donor-derived transplant acceptance-inducing cells. Transplant International, 2008, 21, 808-813.	0.8	33
78	Macrophages Driven to a Novel State of Activation Have Anti-Inflammatory Properties in Mice. Journal of Immunology, 2008, 180, 335-349.	0.4	80
79	Could treatment with neohepatocytes benefit patients with decompensated chronic liver disease?. American Journal of Hematology, 2007, 82, 947-948.	2.0	8
80	Differentiation of In Vitro–Modified Human Peripheral Blood Monocytes Into Hepatocyte–like and Pancreatic Islet-like Cells. Gastroenterology, 2005, 128, 1774-1786.	0.6	194
81	Dendritic cell immunotherapy for urological cancers using cryopreserved allogeneic tumour lysate-pulsed cells: a phase I/II study. BJU International, 2004, 94, 412-418.	1.3	94
82	Cryopreservation of immature monocyte-derived dendritic cells results in enhanced cell maturation but reduced endocytic activity and efficiency of adenoviral transduction. Journal of Immunological Methods, 2003, 272, 35-48.	0.6	26
83	Transforming growth factor-beta (TGF-β1) genotype and lung allograft fibrosis. Journal of Heart and Lung Transplantation, 1999, 18, 517-523.	0.3	94
84	Transforming growth factor beta (TGF-β) and obliterative bronchiolitis following pulmonary transplantation. Journal of Heart and Lung Transplantation, 1999, 18, 828-837.	0.3	166
85	Novel polymorphisms in the promoter and 5′ UTR regions of the human vascular endothelial growth factor gene. Human Immunology, 1999, 60, 1245-1249.	1.2	278
86	Standard Protocols for Flow Cytometry for monocytes, macrophages, DC and T cells. Protocol Exchange, 0, , .	0.3	1
87	Standard Protocols for Generation of Monocyte-derived Cell Types. Protocol Exchange, 0, , .	0.3	1
88	Identification and Isolation of Type II NKT Cell Subsets in Human Blood and Liver. Frontiers in Immunology, 0, 13, .	2.2	3