Tessa Lord

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2969012/publications.pdf

Version: 2024-02-01

567281 552781 1,169 29 15 26 citations h-index g-index papers 31 31 31 1558 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	A novel high throughput screen to identify candidate molecular networks that regulate spermatogenic stem cell functions. Biology of Reproduction, 2022, 106, 1175-1190.	2.7	4
2	A scRNA-seq Approach to Identifying Changes in Spermatogonial Stem Cell Gene Expression Following in vitro Culture. Frontiers in Cell and Developmental Biology, 2022, 10, 782996.	3.7	2
3	Proteomic Dissection of the Impact of Environmental Exposures on Mouse Seminal Vesicle Function. Molecular and Cellular Proteomics, 2021, 20, 100107.	3 . 8	16
4	Gross and microanatomy of the male reproductive duct system of the saltwater crocodile. Reproduction, Fertility and Development, 2021, 33, 540-554.	0.4	6
5	A regulatory role for CHD4 in maintenance of the spermatogonial stem cell pool. Stem Cell Reports, 2021, 16, 1555-1567.	4.8	12
6	Transcriptomic analysis of the seminal vesicle response to the reproductive toxicant acrylamide. BMC Genomics, 2021, 22, 728.	2.8	7
7	Translational Repression of G3BP in Cancer and Germ Cells Suppresses Stress Granules and Enhances Stress Tolerance. Molecular Cell, 2020, 79, 645-659.e9.	9.7	40
8	Testicular-borne factors affect sperm fertility. Science, 2020, 368, 1053-1054.	12.6	2
9	Metabolic Changes Accompanying Spermatogonial Stem Cell Differentiation. Developmental Cell, 2020, 52, 399-411.	7.0	54
10	Investigation into the presence and functional significance of proinsulin C-peptide in the female germlineâ€. Biology of Reproduction, 2019, 100, 1275-1289.	2.7	5
11	MAGE cancer-testis antigens protect the mammalian germline under environmental stress. Science Advances, 2019, 5, eaav4832.	10.3	56
12	A Kinase Anchor Protein 4 Is Vulnerable to Oxidative Adduction in Male Germ Cells. Frontiers in Cell and Developmental Biology, 2019, 7, 319.	3.7	29
13	Testicular Architecture Is Critical for Mediation of Retinoic Acid Responsiveness by Undifferentiated Spermatogonial Subtypes in the Mouse. Stem Cell Reports, 2018, 10, 538-552.	4.8	40
14	Functional assessment of spermatogonial stem cell purity in experimental cell populations. Stem Cell Research, 2018, 29, 129-133.	0.7	16
15	Double Strand Break DNA Repair occurs via Non-Homologous End-Joining in Mouse MII Oocytes. Scientific Reports, 2018, 8, 9685.	3.3	25
16	Spermatogonial Response to Somatic Cell Interactions. , 2018, , 53-58.		1
17	ID4 levels dictate the stem cell state in mouse spermatogonia. Development (Cambridge), 2017, 144, 624-634.	2.5	143
18	A revised Asingle model to explain stem cell dynamics in the mouse male germline. Reproduction, 2017, 154, R55-R64.	2.6	63

#	Article	IF	CITATION
19	Regulation of Spermatogonial Stem Cell Maintenance and Self-Renewal. , 2017, , 91-129.		6
20	Identification of a key role for permeability glycoprotein in enhancing the cellular defense mechanisms of fertilized oocytes. Developmental Biology, 2016, 417, 63-76.	2.0	15
21	Data on the concentrations of etoposide, PSC833, BAPTA-AM, and cycloheximide that do not compromise the vitality of mature mouse oocytes, parthenogenetically activated and fertilized embryos. Data in Brief, 2016, 8, 1215-1220.	1.0	4
22	Accumulation of Electrophilic Aldehydes During Postovulatory Aging of Mouse Oocytes Causes Reduced Fertility, Oxidative Stress, and Apoptosis 1. Biology of Reproduction, 2015, 92, 33.	2.7	49
23	Fertilization stimulates 8-hydroxy-2′-deoxyguanosine repair and antioxidant activity to prevent mutagenesis in the embryo. Developmental Biology, 2015, 406, 1-13.	2.0	74
24	Accumulation of 4-hydroxynonenal during post-ovulatory ageing of mouse oocytes causes reduced fertility, oxidative stress and apoptosis. Fertility and Sterility, 2014, 102, e330.	1.0	0
25	On methods for the detection of reactive oxygen species generation by human spermatozoa: analysis of the cellular responses to catechol oestrogen, lipid aldehyde, menadione and arachidonic acid. Andrology, 2013, 1, 192-205.	3.5	98
26	Melatonin Prevents Postovulatory Oocyte Aging in the Mouse and Extends the Window for Optimal Fertilization In Vitro 1. Biology of Reproduction, 2013, 88, 67.	2.7	128
27	The senescence-accelerated mouse prone 8 as a model for oxidative stress and impaired DNA repair in the male germ line. Reproduction, 2013, 146, 253-262.	2.6	38
28	Oxidative stress and ageing of the post-ovulatory oocyte. Reproduction, 2013, 146, R217-R227.	2.6	189
29	Dynamin Regulates Specific Membrane Fusion Events Necessary for Acrosomal Exocytosis in Mouse Spermatozoa. Journal of Biological Chemistry, 2012, 287, 37659-37672.	3.4	45