Yongjoon Cho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2968999/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss. Science, 2020, 369, 1615-1620.	12.6	1,122
2	Simultaneous Interfacial Modification and Crystallization Control by Biguanide Hydrochloride for Stable Perovskite Solar Cells with PCE of 24.4%. Advanced Materials, 2022, 34, e2106118.	21.0	211
3	Highly Flexible and Efficient Allâ€Polymer Solar Cells with Highâ€Viscosity Processing Polymer Additive toward Potential of Stretchable Devices. Angewandte Chemie - International Edition, 2018, 57, 13287.	13.8	166
4	Flexible Organic Solar Cells Over 15% Efficiency with Polyimide-Integrated Graphene Electrodes. Joule, 2020, 4, 1021-1034.	24.0	148
5	Large-area perovskite solar cells employing spiro-Naph hole transport material. Nature Photonics, 2022, 16, 119-125.	31.4	123
6	Highly Flexible and Efficient Allâ€Polymer Solar Cells with Highâ€Viscosity Processing Polymer Additive toward Potential of Stretchable Devices. Angewandte Chemie, 2018, 130, 13461-13466.	2.0	108
7	Organic Photovoltaics with Multiple Donor–Acceptor Pairs. Advanced Materials, 2019, 31, e1804762.	21.0	106
8	Ultrafast Channel II process induced by a 3-D texture with enhanced acceptor order ranges for high-performance non-fullerene polymer solar cells. Energy and Environmental Science, 2018, 11, 2569-2580.	30.8	72
9	Guest-oriented non-fullerene acceptors for ternary organic solar cells with over 16.0% and 22.7% efficiencies under one-sun and indoor light. Nano Energy, 2020, 75, 104896.	16.0	72
10	High performance H2O2 production achieved by sulfur-doped carbon on CdS photocatalyst via inhibiting reverse H2O2 decomposition. Applied Catalysis B: Environmental, 2021, 284, 119690.	20.2	69
11	Unassisted photocatalytic H2O2 production under visible light by fluorinated polymer-TiO2 heterojunction. Chemical Engineering Journal, 2021, 418, 129346.	12.7	63
12	Regular H-Bonding-Containing Polymers with Stretchability up to 100% External Strain for Self-Healable Plastic Transistors. Chemistry of Materials, 2020, 32, 1914-1924.	6.7	60
13	Harmonious Compatibility Dominates Influence of Sideâ€Chain Engineering on Morphology and Performance of Ternary Solar Cells. Advanced Energy Materials, 2018, 8, 1800616.	19.5	45
14	Highâ€Performance Inverted Perovskite Solar Cells with Operational Stability via nâ€Type Small Molecule Additiveâ€Assisted Defect Passivation. Advanced Energy Materials, 2020, 10, 2001920.	19.5	45
15	An Ultrahigh Mobility in Isomorphic Fluorobenzo[<i>c</i>][1,2,5]thiadiazoleâ€Based Polymers. Angewandte Chemie - International Edition, 2018, 57, 13629-13634.	13.8	43
16	Triisopropylsilylâ€5ubstituted Benzo[1,2â€ <i>b</i> :4,5â€ <i>c</i> ′]dithiopheneâ€4,8â€dioneâ€Containing Co with More Than 17% Efficiency in Organic Solar Cells. Advanced Functional Materials, 2021, 31, 2102371.	polymers 14.9	43
17	Volatilizable and cost-effective quinone-based solid additives for improving photovoltaic performance and morphological stability in non-fullerene polymer solar cells. Journal of Materials Chemistry A, 2020, 8, 13049-13058.	10.3	41
18	Insights into constitutional isomeric effects on donor–acceptor intermolecular arrangements in non-fullerene organic solar cells. Journal of Materials Chemistry A, 2019, 7, 18468-18479.	10.3	38

Yongjoon Cho

#	Article	IF	CITATIONS
19	A built-in electric field induced by ferroelectrics increases halogen-free organic solar cell efficiency in various device types. Nano Energy, 2020, 68, 104327.	16.0	38
20	3D Cu ball-based hybrid triboelectric nanogenerator with non-fullerene organic photovoltaic cells for self-powering indoor electronics. Nano Energy, 2020, 77, 105271.	16.0	33
21	Effect of Third Component on Efficiency and Stability in Ternary Organic Solar Cells: More than a Simple Superposition. Solar Rrl, 2022, 6, 2100819.	5.8	32
22	Ring-perfluorinated non-volatile additives with a high dielectric constant lead to highly efficient and stable organic solar cells. Journal of Materials Chemistry C, 2019, 7, 4716-4724.	5.5	29
23	Silicon and oxygen synergistic effects for the discovery of new high-performance nonfullerene acceptors. Nature Communications, 2020, 11, 5814.	12.8	29
24	Naphthalene as a Thermalâ€Annealingâ€Free Volatile Solid Additive in Nonâ€Fullerene Polymer Solar Cells with Improved Performance and Reproducibility. Advanced Functional Materials, 2022, 32, .	14.9	29
25	Stretchable N-Type High-Performance Polymers Based on Asymmetric Thienylvinyl-1,1-Dicyanomethylene-3-Indanone for Plastic Electronics. Chemistry of Materials, 2022, 34, 1554-1566.	6.7	27
26	Understanding of Fluorination Dependence on Electron Mobility and Stability of Naphthalenediimide-Based Polymer Transistors in Environment with 100% Relative Humidity. ACS Applied Materials & Interfaces, 2019, 11, 40347-40357.	8.0	26
27	Horizontalâ€; Verticalâ€; and Cross onjugated Small Molecules: Conjugated Pathwayâ€Performance Correlations along Operation Mechanisms in Ternary Nonâ€Fullerene Organic Solar Cells. Small, 2020, 16, e1905309.	10.0	25
28	Regioregular, yet ductile and amorphous indacenodithiophene-based polymers with high-mobility for stretchable plastic transistors. Journal of Materials Chemistry C, 2021, 9, 9670-9682.	5.5	25
29	Dithienogermole-Based Nonfullerene Acceptors: Roles of the Side-Chains' Direction and Development of Green-Tinted Efficient Semitransparent Organic Solar Cells. ACS Applied Energy Materials, 2020, 3, 7689-7698.	5.1	21
30	Highly Efficient Organic Photovoltaics Enhanced Using Organic Passivation Layer Vacuum Deposition. Advanced Functional Materials, 2020, 30, 2005037.	14.9	20
31	Toxic Solvent―and Additiveâ€Free Efficient Allâ€Polymer Solar Cells via a Simple Random Sequence Strategy in Both Donor and Acceptor Copolymer Backbones. Small Methods, 2020, 4, 1900696.	8.6	19
32	Diazapentalene-Containing Ultralow-Band-Gap Copolymers for High-Performance Near-Infrared Organic Phototransistors. Chemistry of Materials, 2021, 33, 7499-7508.	6.7	19
33	Viable Mixing Protocol Based on Formulated Equations for Achieving Desired Molecular Weight and Maximal Charge Separation of Photovoltaic Polymer. Advanced Energy Materials, 2021, 11, 2102594.	19.5	19
34	Thickâ€Film Highâ€Performance Solar Cells with a C ₆₀ ontaining Polystyrene Additive. Solar Rrl, 2019, 3, 1900033.	5.8	16
35	Artificial Intelligence Designer for Highly-Efficient Organic Photovoltaic Materials. Journal of Physical Chemistry Letters, 2021, 12, 8847-8854.	4.6	15
36	Twoâ€Dimension Conjugated Acceptors Based on Benzodi(cyclopentadithiophene) Core with Thiopheneâ€Fused Ending Group for Efficient Polymer Solar Cells. Solar Rrl, 2020, 4, 2000071.	5.8	12

Уонсјоон Сно

#	Article	IF	CITATIONS
37	Antioxidant Additive with a High Dielectric Constant for High Photoâ€Oxidative Stabilization of Organic Solar Cells without Almost Sacrificing Initial High Efficiencies. Solar Rrl, 2021, 5, 2000812.	5.8	12
38	Graphene-Assisted Zwitterionic Conjugated Polycyclic Molecular Interfacial Layer Enables Highly Efficient and Stable Inverted Perovskite Solar Cells. Chemistry of Materials, 2021, 33, 5563-5571.	6.7	11
39	Phase Transition Modulation and Defect Suppression in Perovskite Solar Cells Enabled by a Selfâ€Sacrificed Template. Solar Rrl, 2021, 5, 2100448.	5.8	10
40	Zwitterionic Conjugated Surfactant Functionalization of Graphene with pHâ€Independent Dispersibility: An Efficient Electron Mediator for the Oxygen Evolution Reaction in Acidic Media. Small, 2020, 16, 1906635.	10.0	8
41	Chiral Optoelectronic Functionalities <i>via</i> DNA–Organic Semiconductor Complex. ACS Nano, 2021, 15, 20353-20363.	14.6	7
42	Understanding of copolymers containing pyridine and selenophene simultaneously and their polarity conversion in transistors. Materials Chemistry Frontiers, 2020, 4, 3567-3577.	5.9	6
43	Thermally Stable and Highâ€Mobility Dithienopyranâ€Based Copolymers: How Donor–Acceptor―and Donor–Donorâ€Type Structures Differ in Thinâ€Film Transistors. Small Structures, 2021, 2, 2100024.	12.0	6
44	An Ultrahigh Mobility in Isomorphic Fluorobenzo[<i>c</i>][1,2,5]thiadiazoleâ€Based Polymers. Angewandte Chemie, 2018, 130, 13817-13822.	2.0	4
45	Unidirectional Macroscopic Alignment of Chlorobenzo[<i>c</i>]â€{1,2,5]thiadiazoleâ€Based Semiconducting Copolymers with Controlled Regiochemistry. Advanced Electronic Materials, 2021, 7, 2100551.	5.1	4
46	Simultaneous Interfacial Modification and Crystallization Control by Biguanide Hydrochloride for Stable Perovskite Solar Cells with PCE of 24.4% (Adv. Mater. 8/2022). Advanced Materials, 2022, 34, .	21.0	3
47	Highly crystalline acceptor materials based on benzodithiophene with different amount of fluorine substitution on alkoxyphenyl conjugated side chains for organic photovoltaics. Materials Reports Energy, 2021, 1, 100059.	3.2	2