Suoyuan Lian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2968802/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Continuous Flow Synthesis of Platinum Nanoparticles in Porous Carbon as Durable and Methanolâ€Tolerant Electrocatalysts for the Oxygen Reduction Reaction. ChemElectroChem, 2018, 5, 62-70.	1.7	18
2	Template-free synthesis of mesoporous manganese oxides with catalytic activity in the oxygen evolution reaction. Sustainable Energy and Fuels, 2017, 1, 780-788.	2.5	31
3	Near-infrared light controlled photocatalytic activity of carbon quantum dots for highly selective oxidation reaction. Nanoscale, 2013, 5, 3289.	2.8	283
4	Highly ordered three dimensional macroporous carbon spheres and their acid catalytic properties. Solid State Sciences, 2013, 24, 115-119.	1.5	10
5	One-step solvothermal synthesis of ZnO–carbon composite spheres containing different amounts of carbon and their use as visible light photocatalysts. Solid State Communications, 2013, 155, 53-56.	0.9	19
6	Scanning transmission X-ray microscopy, X-ray photoelectron spectroscopy, and cyclic voltammetry study on the enhanced visible photocatalytic mechanism of carbon–TiO2 nanohybrids. Applied Surface Science, 2012, 258, 3846-3853.	3.1	26
7	Carbon microspheres from ethanol at low temperature: Fabrication, characterization and their use as an electrocatalyst support for methanol oxidation. Materials Research Bulletin, 2012, 47, 3336-3343.	2.7	13
8	Carbon quantum dots/Cu2O composites with protruding nanostructures and their highly efficient (near) infrared photocatalytic behavior. Journal of Materials Chemistry, 2012, 22, 17470.	6.7	322
9	Photo-controlled redox of hydrogen-terminated silicon nanowire established by the reversible color alteration of methylene blue. Materials Research Bulletin, 2012, 47, 1119-1122.	2.7	8
10	Hematite homogeneous core/shell hierarchical spheres: Surfactant-free solvothermal preparation and their improved catalytic property of selective oxidation. Journal of Solid State Chemistry, 2012, 185, 117-123.	1.4	9
11	Ultra-small sized Y2O3:Eu3+ nanocrystals: One-step polyoxometalate-assisted synthesis and their photoluminescence properties. Journal of Luminescence, 2012, 132, 2155-2160.	1.5	18
12	Fe2O3/carbon quantum dots complex photocatalysts and their enhanced photocatalytic activity under visible light. Dalton Transactions, 2011, 40, 10822.	1.6	304
13	Nanoporous TiO2 spheres with narrow pore size distribution and improved visible light photocatalytic abilities. Chemical Communications, 2011, 47, 8025.	2.2	63
14	Highly ordered macroporous carbon spheres and their catalytic application for methanol oxidation. Journal of Colloid and Interface Science, 2011, 361, 503-508.	5.0	22
15	Hydrogen-terminated silicon nanowire photocatalysis: Benzene oxidation and methyl red decomposition. Materials Research Bulletin, 2011, 46, 2441-2444.	2.7	15
16	One-step ultrasonic synthesis of water-soluble carbon nanoparticles with excellent photoluminescent properties. Carbon, 2011, 49, 605-609.	5.4	783
17	Preparation and photoluminescence study of mesoporous indium hydroxide nanorods. Materials Research Bulletin, 2010, 45, 109-112.	2.7	7
18	Waterâ€Soluble Fluorescent Carbon Quantum Dots and Photocatalyst Design. Angewandte Chemie - International Edition, 2010, 49, 4430-4434.	7.2	2,258

SUOYUAN LIAN

#	Article	IF	CITATIONS
19	Physicochemical Property Estimation of an Ionic Liquid Based on Glutamic Acidâ^'BMIGlu. Journal of Chemical & Engineering Data, 2010, 55, 2616-2619.	1.0	29
20	Tuning metal@metal salt photocatalytic abilities by different charged anions. Dalton Transactions, 2010, 39, 10593.	1.6	36
21	Fabrication of single-crystalline Co3O4 nanorods via a low-temperature solvothermal process. Materials Letters, 2007, 61, 3893-3896.	1.3	31
22	Surfactant-assisted solvothermal preparation of submicrometer-sized hollow hematite particles and their photocatalytic activity. Materials Research Bulletin, 2006, 41, 1192-1198.	2.7	34
23	Synthesis of magnetite octahedrons from iron powders through a mild hydrothermal method. Materials Research Bulletin, 2006, 41, 2226-2231.	2.7	62
24	Self-assembly of lacunary Dawson type polyoxometalates and poly(allylamine hydrochloride) multilayer films: photoluminescent and electrochemical behavior. Applied Surface Science, 2005, 242, 199-206.	3.1	18
25	Covalent assembly of shortened multiwall carbon nanotubes on polyelectrolyte films and relevant electrochemistry study. Journal of Colloid and Interface Science, 2005, 284, 216-221.	5.0	9
26	Shape-controlled synthesis of Cu2O nanocrystals assisted by Triton X-100. Journal of Crystal Growth, 2005, 285, 534-540.	0.7	56
27	Surfactant-assisted electrochemical method for dendritic silver nanocrystals with advanced structure. Materials Letters, 2005, 59, 2289-2291.	1.3	28
28	Controllable Fabrication of Carbon Nanotube and Nanobelt with a Polyoxometalate-Assisted Mild Hydrothermal Process. Journal of the American Chemical Society, 2005, 127, 6534-6535.	6.6	160
29	Synthesis of magnetite nanorods and porous hematite nanorods. Solid State Communications, 2004, 129, 485-490.	0.9	221
30	One-Step Water-Assisted Synthesis of High-Quality Carbon Nanotubes Directly from Graphite ChemInform, 2004, 35, no.	0.1	0
31	Polyoxometalates nanoparticles: synthesis, characterization and carbon nanotube modification. Solid State Communications, 2004, 129, 559-564.	0.9	55
32	Microemulsion-directed synthesis of different CuS nanocrystals. Solid State Communications, 2004, 130, 309-312.	0.9	79
33	Shape-controlled synthesis of nanocrystalline titania at low temperature. Solid State Communications, 2004, 130, 789-792.	0.9	64
34	Growth of single-crystal magnetite nanowires from Fe3O4 nanoparticles in a surfactant-free hydrothermal process. Solid State Communications, 2004, 132, 375-378.	0.9	49
35	The first example of multilayer films with thermochromic properties. Journal of Solid State Chemistry, 2004, 177, 1776-1779.	1.4	23
36	Synthesis and characterization of polyoxometalate nanowires based on a novel microemulsion process. Nanotechnology, 2004, 15, 55-58.	1.3	39

SUOYUAN LIAN

#	Article	IF	CITATIONS
37	Selected synthesis of carbon nanostructures directed by silver nanocrystals. Nanotechnology, 2004, 15, 490-493.	1.3	14
38	Convenient Controllable Synthesis of Inorganic 1D Nanocrystals and 3D High-Ordered Microtubes. European Journal of Inorganic Chemistry, 2003, 2003, 370-376.	1.0	69
39	Convenient synthesis of single crystalline magnetic Fe3O4 nanorods. Solid State Communications, 2003, 127, 605-608.	0.9	113
40	One-Step Water-Assisted Synthesis of High-Quality Carbon Nanotubes Directly from Graphite. Journal of the American Chemical Society, 2003, 125, 13652-13653.	6.6	132
41	In situ controllable synthesis of polyoxometalate nanoparticles in polyelectrolyte multilayersElectronic supplementary information (ESI) available: Fig. S1 and S2, discussed in the text. See http://www.rsc.org/suppdata/jm/b3/b301056b/. Journal of Materials Chemistry, 2003, 13, 647-649.	6.7	22