
Donghui Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2968551/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multifunctions of dual Zn/Mg ion co-implanted titanium on osteogenesis, angiogenesis and bacteria inhibition for dental implants. Acta Biomaterialia, 2017, 49, 590-603.	8.3	217
2	Enhanced Corrosion Resistance and Biocompatibility of Magnesium Alloy by Mg–Al-Layered Double Hydroxide. ACS Applied Materials & Interfaces, 2016, 8, 35033-35044.	8.0	173
3	Effect of Local Alkaline Microenvironment on the Behaviors of Bacteria and Osteogenic Cells. ACS Applied Materials & Interfaces, 2018, 10, 42018-42029.	8.0	110
4	Layer-Number Dependent Antibacterial and Osteogenic Behaviors of Graphene Oxide Electrophoretic Deposited on Titanium. ACS Applied Materials & Interfaces, 2017, 9, 12253-12263.	8.0	78
5	PEO/Mg–Zn–Al LDH Composite Coating on Mg Alloy as a Zn/Mg Ion-Release Platform with Multifunctions: Enhanced Corrosion Resistance, Osteogenic, and Antibacterial Activities. ACS Biomaterials Science and Engineering, 2018, 4, 4112-4121.	5.2	76
6	Sealing the Pores of PEO Coating with Mg-Al Layered Double Hydroxide: Enhanced Corrosion Resistance, Cytocompatibility and Drug Delivery Ability. Scientific Reports, 2017, 7, 8167.	3.3	74
7	Butyrate-inserted Ni–Ti layered double hydroxide film for H2O2-mediated tumor and bacteria killing. Materials Today, 2017, 20, 238-257.	14.2	70
8	Layered double hydroxide/poly-dopamine composite coating with surface heparinization on Mg alloys: improved anticorrosion, endothelialization and hemocompatibility. Biomaterials Science, 2018, 6, 1846-1858.	5.4	65
9	Oxidative stress-mediated selective antimicrobial ability of nano-VO ₂ against Gram-positive bacteria for environmental and biomedical applications. Nanoscale, 2016, 8, 11907-11923.	5.6	64
10	Preparation of Gold–Carbon Dots and Ratiometric Fluorescence Cellular Imaging. ACS Applied Materials & Interfaces, 2016, 8, 6646-6655.	8.0	64
11	The response of human osteoblasts, epithelial cells, fibroblasts, macrophages and oral bacteria to nanostructured titanium surfaces: a systematic study. International Journal of Nanomedicine, 2017, Volume 12, 1415-1430.	6.7	64
12	Osteogenesis Catalyzed by Titanium-Supported Silver Nanoparticles. ACS Applied Materials & Interfaces, 2017, 9, 5149-5157.	8.0	57
13	How Oxygenâ€Containing Groups on Graphene Influence the Antibacterial Behaviors. Advanced Materials Interfaces, 2017, 4, 1700228.	3.7	51
14	Selective Tumor Cell Inhibition Effect of Ni–Ti Layered Double Hydroxides Thin Films Driven by the Reversed pH Gradients of Tumor Cells. ACS Applied Materials & Interfaces, 2015, 7, 7843-7854.	8.0	49
15	Nanostructural Surfaces with Different Elastic Moduli Regulate the Immune Response by Stretching Macrophages. Nano Letters, 2019, 19, 3480-3489.	9.1	49
16	Alkali-treated titanium selectively regulating biological behaviors of bacteria, cancer cells and mesenchymal stem cells. Journal of Colloid and Interface Science, 2014, 436, 160-170.	9.4	44
17	Regulating the local pH level of titanium <i>via</i> Mg–Fe layered double hydroxides films for enhanced osteogenesis. Biomaterials Science, 2018, 6, 1227-1237.	5.4	43
18	A facile and universal strategy to endow implant materials with antibacterial ability <i>via</i> alkalinity disturbing bacterial respiration. Biomaterials Science, 2020, 8, 1815-1829.	5.4	43

Donghui Wang

#	Article	IF	CITATIONS
19	Assembled gold nanorods for the photothermal killing of bacteria. Colloids and Surfaces B: Biointerfaces, 2019, 173, 833-841.	5.0	39
20	Synergistic effects of immunoregulation and osteoinduction of ds-block elements on titanium surface. Bioactive Materials, 2021, 6, 191-207.	15.6	37
21	Loading 5-Fluorouracil into calcined Mg/Al layered double hydroxide on AZ31 via memory effect. Materials Letters, 2018, 213, 383-386.	2.6	35
22	The prospect of layered double hydroxide as bone implants: A study of mechanical properties, cytocompatibility and antibacterial activity. Applied Clay Science, 2018, 165, 179-187.	5.2	35
23	NIRâ€Triggered Crystal Phase Transformation of NiTiâ€Layered Double Hydroxides Films for Localized Chemothermal Tumor Therapy. Advanced Science, 2018, 5, 1700782.	11.2	34
24	Smart release of doxorubicin loaded on polyetheretherketone (PEEK) surface with 3D porous structure. Colloids and Surfaces B: Biointerfaces, 2018, 163, 175-183.	5.0	33
25	Antibacterial activity of an NIR-induced Zn ion release film. Journal of Materials Chemistry B, 2020, 8, 406-415.	5.8	32
26	Selenium doped Ni–Ti layered double hydroxide (Ni–Ti LDH) films with selective inhibition effect to cancer cells and bacteria. RSC Advances, 2015, 5, 106848-106859.	3.6	31
27	Dielectrophoretic behaviours of microdroplet sandwiched between LN substrates. Scientific Reports, 2016, 6, 29166.	3.3	31
28	Enhanced corrosion resistance and biocompatibility of magnesium alloy by hydroxyapatite/graphene oxide bilayer coating. Materials Letters, 2020, 264, 127322.	2.6	29
29	Synergistic Effect of Co-Delivering Ciprofloxacin and Tetracycline Hydrochloride for Promoted Wound Healing by Utilizing Coaxial PCL/Gelatin Nanofiber Membrane. International Journal of Molecular Sciences, 2022, 23, 1895.	4.1	28
30	"Petal effect―inspired superhydrophobic and highly adhesive coating on magnesium with enhanced corrosion resistance and biocompatibility. Science China Materials, 2018, 61, 629-642.	6.3	25
31	Self-adjusting antibacterial properties of Ag-incorporated nanotubes on micro-nanostructured Ti surfaces. Biomaterials Science, 2019, 7, 4075-4087.	5.4	24
32	Improved in vitro angiogenic behavior of human umbilical vein endothelial cells with oxidized polydopamine coating. Colloids and Surfaces B: Biointerfaces, 2020, 194, 111176.	5.0	23
33	Thermosensitive -hydrogel-coated titania nanotubes with controlled drug release and immunoregulatory characteristics for orthopedic applications. Materials Science and Engineering C, 2021, 122, 111878.	7.3	23
34	Poly(styrenesulfonate)-Modified Ni–Ti Layered Double Hydroxide Film: A Smart Drug-Eluting Platform. ACS Applied Materials & Interfaces, 2016, 8, 24491-24501.	8.0	22
35	Zn-contained mussel-inspired film on Mg alloy for inhibiting bacterial infection and promoting bone regeneration. International Journal of Energy Production and Management, 2021, 8, rbaa044.	3.7	21
36	The potential cytotoxicity and mechanism of VO ₂ thin films for intelligent thermochromic windows. RSC Advances, 2015, 5, 106315-106324.	3.6	19

Donghui Wang

#	Article	IF	CITATIONS
37	Surface alloyed Ti–Zr layer constructed on titanium by Zr ion implantation for improving physicochemical and osteogenic properties. Progress in Natural Science: Materials International, 2020, 30, 635-641.	4.4	18
38	Biomedical Implants with Chargeâ€Transfer Monitoring and Regulating Abilities. Advanced Science, 2021, 8, e2004393.	11.2	18
39	Corrosion behavior and cytocompatibility of fluoride-incorporated plasma electrolytic oxidation coating on biodegradable AZ31 alloy. International Journal of Energy Production and Management, 2017, 4, 1-10.	3.7	17
40	Corrosion Motivated ROS Generation Helps Endow Titanium with Broadâ€Spectrum Antibacterial Abilities. Advanced Materials Interfaces, 2019, 6, 1900514.	3.7	17
41	Tailoring time-varying alkaline microenvironment on titanium for sequential anti-infection and osseointegration. Chemical Engineering Journal, 2022, 431, 133940.	12.7	17
42	Biocompatibility and bone regeneration of PEO/Mg-Al LDH-coated pure Mg: an in vitro and in vivo study. Science China Materials, 2021, 64, 460-473.	6.3	15
43	A pH-response chemotherapy synergistic photothermal therapy for tumor suppression and bone regeneration by mussel-inspired Mg implant. International Journal of Energy Production and Management, 2021, 8, rbab053.	3.7	13
44	Biological and antibacterial properties of TiO2 coatings containing Ca/P/Ag by one-step and two-step methods. Biomedical Microdevices, 2020, 22, 24.	2.8	12
45	Femtosecond laser-induced nanoporous layer for enhanced osteogenesis of titanium implants. Materials Science and Engineering C, 2021, 127, 112247.	7.3	12
46	An <i>in vitro</i> and <i>in vivo</i> comparison of Mg(OH) ₂ -, MgF ₂ - and HA-coated Mg in degradation and osteointegration. Biomaterials Science, 2020, 8, 3320-3333.	5.4	11
47	RANKL inhibition halts lesion progression and promotes bone remineralization in mice with fibrous dysplasia. Bone, 2022, 156, 116301.	2.9	10
48	Antibacterial Vancomycin@ZIF-8 Loaded PVA Nanofiber Membrane for Infected Bone Repair. International Journal of Molecular Sciences, 2022, 23, 5629.	4.1	9
49	Regulating the Behavior of Human Gingival Fibroblasts by sp ² Domains in Reduced Graphene Oxide. ACS Biomaterials Science and Engineering, 2019, 5, 6414-6424.	5.2	8
50	Structure design and biological evaluation of the mechanical-adaptive titanium-based porous implants. Materials Technology, 2021, 36, 851-856.	3.0	8
51	Thermo-sensitive hydrogel on anodized titanium surface to regulate immune response. Surface and Coatings Technology, 2021, 405, 126624.	4.8	8
52	Strontium-Containing Barium Titanate-Modified Titanium for Enhancement of Osteointegration. ACS Biomaterials Science and Engineering, 2022, 8, 1271-1278.	5.2	6
53	Mg-Fe layered double hydroxides modified titanium enhanced the adhesion of human gingival fibroblasts through regulation of local pH level. Materials Science and Engineering C, 2021, 131, 112485.	7.3	4
54	Enhanced corrosion resistance and cytocompatibility of zinc by Zn-Al layered double hydroxide films. Materials Letters, 2022, 314, 131873.	2.6	4

#	Article	IF	CITATIONS
55	Restoring the osteogenic activity of bacterial debris contaminated titanium by doping with magnesium. RSC Advances, 2016, 6, 113395-113404.	3.6	1
56	Porous thermosensitive coating with water-locking ability for enhanced osteogenic and antibacterial abilities. Materials Today Bio, 2022, 14, 100285.	5.5	1
57	A superlattice composite of Zn–Fe layered double hydroxide and graphene oxide for antitumor application. Journal of Materials Chemistry B, 2022, 10, 5556-5560.	5.8	1