Jun Takeda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2968352/publications.pdf

Version: 2024-02-01

185 papers	1,945 citations	236612 25 h-index	301761 39 g-index
189 all docs	189 docs citations	189 times ranked	1938 citing authors

#	Article	IF	CITATIONS
1	Ferroelectric Soft Mode in a <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>SrTiO</mml:mi><mml:mn>3</mml:mn></mml:msub></mml:math> Thin Film Impulsively Driven to the Anharmonic Regime Using Intense Picosecond Terahertz Pulses. Physical Review Letters, 2012, 108, 097401.	2.9	140
2	Real-space coherent manipulation of electrons in a single tunnel junction by single-cycle terahertz electric fields. Nature Photonics, 2016, 10, 762-765.	15.6	124
3	Time-resolved luminescence spectroscopy by the optical Kerr-gate method applicable to ultrafast relaxation processes. Physical Review B, 2000, 62, 10083-10087.	1.1	103
4	Femtosecond Dynamics of the Exciton Self-Trapping Process in a Quasi-One-Dimensional Halogen-Bridged Platinum Complex. Physical Review Letters, 1998, 81, 417-420.	2.9	75
5	Single-shot measurement of a terahertz electric-field waveform using a reflective echelon mirror. Applied Physics Letters, 2013, 103, .	1.5	61
6	Ultrafast crystalline-to-amorphous phase transition in Ge2Sb2Te5 chalcogenide alloy thin film using single-shot imaging spectroscopy. Applied Physics Letters, 2014, 104, .	1.5	57
7	Ultrafast dynamics of lattice relaxation of excitons in quasi-one-dimensional halogen-bridged platinum complexes. Physical Review B, 2002, 66, .	1.1	54
8	Observation of the wave-packet oscillation during the exciton self-trapping process in a quasi-one-dimensional halogen-bridged Pt complex. Physical Review B, 1999, 60, 7961-7965.	1.1	46
9	Tailoring Single-Cycle Near Field in a Tunnel Junction with Carrier-Envelope Phase-Controlled Terahertz Electric Fields. Nano Letters, 2018, 18, 5198-5204.	4.5	46
10	Ultrafast Dynamics of Surface-Enhanced Raman Scattering Due to Au Nanostructures. Nano Letters, 2011, 11, 2648-2654.	4.5	39
11	Ultrastrong magnon–magnon coupling dominated by antiresonant interactions. Nature Communications, 2021, 12, 3115.	5.8	39
12	Ultrafast time-resolved electron diffraction revealing the nonthermal dynamics of near-UV photoexcitation-induced amorphization in Ge2Sb2Te5. Scientific Reports, 2015, 5, 13530.	1.6	36
13	Terahertz-Field-Induced Nonlinear Electron Delocalization in Au Nanostructures. Nano Letters, 2015, 15, 1036-1040.	4.5	34
14	Single-shot terahertz time-domain spectroscopy in pulsed high magnetic fields. Optics Express, 2016, 24, 30328.	1.7	34
15	Multi-petahertz electron interference in Cr:Al2O3 solid-state material. Nature Communications, 2018, 9, 1468.	5.8	34
16	Dynamics of Photoexcited High Density Carriers in ZnO Epitaxial Thin Films. Physica Status Solidi (B): Basic Research, 2002, 229, 877-880.	0.7	32
17	Real-Time Capturing of the Nuclear Wave-Packet Shape in Self-Trapped Excitons. Physical Review Letters, 2003, 91, 247402.	2.9	32
18	Femtosecond real-time pump–probe imaging spectroscopy. Applied Physics Letters, 2004, 85, 4645-4647.	1.5	31

#	Article	IF	Citations
19	Surface metallic states in ultrathin Bi(001) films studied with terahertz time-domain spectroscopy. Applied Physics Letters, 2012, 100, 251605.	1.5	30
20	Selective Reduction Mechanism of Graphene Oxide Driven by the Photon Mode <i>versus</i> the Thermal Mode. ACS Nano, 2019, 13, 10103-10112.	7.3	30
21	Single-shot time-frequency imaging spectroscopy using an echelon mirror. Optics Letters, 2012, 37, 1118.	1.7	29
22	Optical sampling four-wave-mixing experiment for exciton relaxation processes. Optics Communications, 2000, 174, 291-298.	1.0	28
23	Significant Reduction of On-Site Coulomb EnergyU due to Short-Range Correlation in an Organic Mott Insulator. ChemPhysChem, 2006, 7, 1820-1824.	1.0	28
24	Femtosecond Real-Time Pump-Probe Imaging Spectroscopy Implemented on a Single Shot Basis. Japanese Journal of Applied Physics, 2006, 45, 5986-5989.	0.8	27
25	Magnetic Control of Soft Chiral Phonons in PbTe. Physical Review Letters, 2022, 128, 075901.	2.9	27
26	Photoinduced magnetic phase transition in an organic radical 1,3,5-trithia-2,4,6-triazapentalenyl crystal at room temperature. Chemical Physics Letters, 2003, 378, 456-462.	1.2	25
27	Dynamics of high-density excitons and electron–hole plasma in ZnO epitaxial thin films. Journal of Luminescence, 2006, 119-120, 346-349.	1.5	24
28	Low energy tail of the exciton luminescence band in 2H-PbI2 and its relation to Urbach rule. Solid State Communications, 1985, 56, 101-103.	0.9	21
29	Femtosecond optical Kerr gate fluorescence spectroscopy for ultrafast relaxation processes. Journal of Luminescence, 2000, 87-89, 927-929.	1.5	21
30	Photoluminescence dynamics due to biexcitons and exciton-exciton scattering in the layered-type semiconductor Pbl <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:math> . Physical Review B, 2012, 86, .	1.1	21
31	Ultrafast lasing due to electron–hole plasma in ZnO nano-multipods. Journal of Physics Condensed Matter, 2009, 21, 064211.	0.7	20
32	Broadband pump–probe imaging spectroscopy applicable to ultrafast single-shot events. Applied Physics Express, 2014, 7, 022402.	1.1	20
33	Real-time observation of phonon-polariton dynamics in ferroelectric LiNbO3 in time-frequency space. Applied Physics Letters, 2015, 107, .	1.5	20
34	Terahertz-Field-Driven Scanning Tunneling Luminescence Spectroscopy. ACS Photonics, 2021, 8, 982-987.	3.2	20
35	Terahertz dielectric response of photoexcited carriers in Si revealed via single-shot optical-pump and terahertz-probe spectroscopy. Applied Physics Letters, 2015, 107, .	1.5	19
36	Ultrafast Dynamics of Exciton–Exciton and Exciton–Longitudinal Optical-Phonon Scattering Processes in ZnO Epitaxial Thin Films. Japanese Journal of Applied Physics, 2006, 45, 6961-6963.	0.8	18

#	Article	IF	CITATIONS
37	High-Acquisition-Rate Single-Shot Pump-Probe Measurements Using Time-Stretching Method. Scientific Reports, 2016, 6, 37614.	1.6	18
38	Real-Time Time–Frequency Imaging of Ultrashort Laser Pulses Using an Echelon Mirror. Japanese Journal of Applied Physics, 2011, 50, 102701.	0.8	17
39	ULTRAFAST CARRIER DYNAMICS IN ZnO EPITAXIAL THIN FILMS STUDIED BY OPTICAL KERR GATE LUMINESCENCE SPECTROSCOPY. International Journal of Modern Physics B, 2001, 15, 3669-3672.	1.0	15
40	High-Frequency Coherent Phonons in Graphene on Silicon. Applied Physics Express, 2011, 4, 045101.	1.1	15
41	Coherent Optical Phonons in the Iron Oxypnictide SmFeAsO1-xFx(x=0.075). Journal of the Physical Society of Japan, 2011, 80, 013707.	0.7	15
42	Terahertz Faraday and Kerr rotation spectroscopy of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Bi</mml:mi><mml:n .<="" 100,="" 2019,="" 30="" b,="" fields="" films="" high="" in="" magnetic="" physical="" review="" td="" tesla.="" to="" up=""><td>nrovk⊅ <mm< td=""><td>nl:mas>1</td></mm<></td></mml:n></mml:msub></mml:mrow></mml:math>	nro vk ⊅ <mm< td=""><td>nl:mas>1</td></mm<>	nl:mas>1
43	Photochromism and Luminescence Properties of a 2-(2,4-Dinitrobenzyl)Pyridine Dispersed in Polymer Films. Journal of the Physical Society of Japan, 1999, 68, 1725-1730.	0.7	13
44	Terahertz-induced acceleration of massive Dirac electrons in semimetal bismuth. Scientific Reports, 2015, 5, 15870.	1.6	13
45	Conversion of an electron-hole plasma into a high density excitonic state in ZnO epitaxial thin films. Physica Status Solidi C: Current Topics in Solid State Physics, 2004, 1, 839-842.	0.8	12
46	A new luminescence due to an exciton–exciton collision process in lead iodide induced by two-photon absorption. Journal of Luminescence, 2007, 122-123, 421-423.	1.5	12
47	Radiative and non-radiative decay processes of the excited state of the colored form of photochromic furylfulgide. Chemical Physics Letters, 1994, 220, 443-447.	1.2	11
48	Highly efficient photoinduced phase transition in an organic radical crystal via two-photon absorption process. Physical Review B, 2009, 79, .	1.1	11
49	Real-Time Time–Frequency Imaging of Ultrashort Laser Pulses Using an Echelon Mirror. Japanese Journal of Applied Physics, 2011, 50, 102701.	0.8	11
50	Anharmonic phonon-polariton dynamics in ferroelectric LiNbO3 studied with single-shot pump-probe imaging spectroscopy. Journal of Applied Physics, 2018, 123, .	1.1	11
51	Inter-molecular interaction of photochromic furylfulgide dispersed in a polymer film. Chemical Physics Letters, 1992, 198, 609-614.	1.2	10
52	Intramolecular proton transfer of a 2-(2′,4′-dinitrobenzyl)pyridine studied by femtosecond transient absorption spectroscopy. Chemical Physics Letters, 1998, 290, 341-348.	1.2	10
53	FEMTOSECOND DYNAMICS OF PHOTOEXCITED HIGH DENSITY CARRIERS IN ZnO EPITAXIAL THIN FILMS. Nonlinear Optics, Quantum Optics, 2002, 29, 521-527.	0.2	10
54	Relaxation processes from charge-transfer excited states of organic radical 1,3,5-trithia-2,4,6-triazapentalenyl crystals studied by ultrafast luminescence spectroscopy. Physical Review B, 2006, 74, .	1.1	10

#	Article	IF	CITATIONS
55	An echelon-based single shot optical and terahertz Kerr effect spectrometer. Review of Scientific Instruments, 2019, 90, 053107.	0.6	10
56	Subcycle mid-infrared coherent transients at 4  MHz repetition rate applicable to light-wave-driven scanning tunneling microscopy. Optics Letters, 2019, 44, 5350.	1.7	10
57	OVERTONE MODULATION AND ANTI-PHASING BEHAVIOR OF WAVE-PACKET AMPLITUDES ON THE ADIABATIC POTENTIAL SURFACE OF SELF-TRAPPED EXCITONS. Nonlinear Optics, Quantum Optics, 2002, 29, 587-593.	0.2	9
58	Coherent nanoscale optical-phonon wave packet in graphene layers. Physical Review B, 2013, 88, .	1.1	9
59	Nanoscale electron manipulation in metals with intense THz electric fields. Journal Physics D: Applied Physics, 2018, 51, 103001.	1.3	9
60	Urbach rule in luminescence and dynamics of a momentarily localized exciton in PbI2 and HgI2. Journal of Luminescence, 1987, 38, 55-59.	1.5	8
61	Exciton-Phonon Interaction and Potential Fluctuation Effectin PbI2(1-x)Br2xMixed Crystals. Journal of the Physical Society of Japan, 1991, 60, 3874-3881.	0.7	8
62	ULTRAFAST INTERNAL CONVERSION OF ALL- trans -Î ² -CAROTENE STUDIED BY FEMTOSECOND SPECTROSCOPY. Nonlinear Optics, Quantum Optics, 2002, 29, 579-585.	0.2	8
63	Relaxation and diffusion of photoexcited carriers in ZnO epitaxial thin films. Physica Status Solidi C: Current Topics in Solid State Physics, 2004, 1, 678-681.	0.8	8
64	Resonance enhancement of first- and second-order coherent phonons in metallic single-walled carbon nanotubes. Physical Review B, 2014, 90, .	1.1	8
65	Study of the urbach rule from the exciton luminescence yield in red-HgI2. Solid State Communications, 1987, 64, 1469-1472.	0.9	7
66	Photoinduced diamagnetic to paramagnetic phase transition in organic radical crystals studied by microscopic IR measurements. Journal of Luminescence, 2005, 112, 283-286.	1.5	7
67	Rapid energy transfer in a dendrimer having π-conjugated light-harvesting antennas. New Journal of Physics, 2008, 10, 125024.	1.2	7
68	Nonlinear conversion dynamics from self-trapped exciton states to a macroscopic photoinduced phase in strongly correlated organic radical crystals. Physical Review B, 2009, 80, .	1.1	7
69	xmins:mmi="nttp://www.w3.org/1998/Math/MathML"> <mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mn><mmi:mn><mmi:mo>a^*</mmi:mo><mmi:mrow><mmi:mrow><mmi:mn><mmi:mn><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mr< td=""><td>ıl:mi><td>nl7mrow></td></td></mmi:mr<></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mn></mmi:mn></mmi:mrow></mmi:mrow></mmi:mn></mmi:mn></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow>	ıl :mi > <td>nl7mrow></td>	n l7 mrow>
70	Ültrafast optical modulation of Dirac electrons in gated single-layer graphene. Physical Review B, 2020, 101, .	1.1	7
71	A New Luminescence under High-Density Excitation in Pbl2 Possibly Due to a Self-Trapped Excitonic Molecule. Journal of the Physical Society of Japan, 1989, 58, 1441-1445.	0.7	6
72	Resonance Raman enhancement for photoinduced polaronic states of a quasi-one-dimensional mixed-valence platinum complex. Physical Review B, 1995, 52, 14441-14444.	1.1	6

#	Article	IF	CITATIONS
73	Electronic States of a Photochromic 2-(2,4-Dinitrobenzyl) Pyridine Single Crystal. Journal of the Physical Society of Japan, 1999, 68, 1423-1429.	0.7	6
74	Transient Absorption Spectroscopy for Photochemical Reactions of a Negative Photochromic Spiropyran. Molecular Crystals and Liquid Crystals, 2000, 345, 191-196.	0.3	6
75	Thermochromism and Magnetic Phase Transition in an Organic Radical 1,3,5-Trithia-2,4,6-Triazapentalenyl. Phase Transitions, 2002, 75, 863-867.	0.6	6
76	Real-Time Time-Frequency Two-Dimensional Imaging of Ultrafast Transient Signals in Solid-State Organic Materials. Sensors, 2010, 10, 4253-4269.	2.1	6
77	Spatially resolved spectral phase interferometry with an isolated attosecond pulse. Optics Express, 2020, 28, 21025.	1.7	5
78	Excitation spectrum of exciton luminescence yield in 2Hî—,PbI2 and its relation to Urbach rule. Solid State Communications, 1986, 59, 209-213.	0.9	4
79	Exciton luminescence in PbI2-PbBr2 mixed crystals. Journal of Luminescence, 1991, 48-49, 79-82.	1.5	4
80	Time–frequency two-dimensional mapping of rapid energy transfer in light-harvesting star-shaped dendrimers. Journal of Luminescence, 2008, 128, 771-773.	1.5	4
81	Nonlinear electron dynamics of gold ultrathin films induced by intense terahertz waves. Applied Physics Letters, 2014, 105, .	1.5	4
82	Intermolecular THz Vibrations Relevant to Optically and Thermally Induced Magnetic Phase Transitions in the Strongly Correlated Organic Radical TTTA. Journal of the Physical Society of Japan, 2014, 83, 014713.	0.7	4
83	Bias-induced modulation of ultrafast carrier dynamics in metallic single-walled carbon nanotubes. Physical Review B, 2018, 97, . Macroscopic Ionic Flow in a Superionic Conductor <mml:math< td=""><td>1.1</td><td>4</td></mml:math<>	1.1	4
84	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow><mml:msup><mml:mrow><mml:mi>Na</mml:mi></mml:mrow><mml:mrow><mml:mrow><mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:mi>î²</mml:mi></mml:mrow></mml:math> -Alumina Driven by</mml:mrow></mml:mrow></mml:msup></mml:mrow>	nl:mo>+ <td>mml:mo></td>	mml:mo>
85	Single-Cycle Terahertz Pulses. Physical Review Letters, 2020, 124, 147401. Simultaneous acquisition of complex transmittance and birefringence with two counter-rotating, circularly polarized THz pulses. Optics Express, 2018, 26, 30420.	1.7	4
86	Pulse-to-pulse detection of terahertz radiation emitted from the femtosecond laser ablation process. Optics Express, 2022, 30, 23622.	1.7	4
87	Lifetime and Diffusion Coefficient of Free and Momentarily Localized Excitons in Red-Hgl2. Journal of the Physical Society of Japan, 1988, 57, 3248-3255.	0.7	3
88	Non-Radiative Relaxation of Photochromic Fulgide. Journal of the Physical Society of Japan, 1995, 64, 3522-3528.	0.7	3
89	EVOLUTION OF ELECTRON-HOLE PLASMA AND EXCITONS IN ZnO EPITAXIAL THIN FILMS STUDIED BY FEMTOSECOND SPECTROSCOPY. Nonlinear Optics, Quantum Optics, 2002, 29, 427-433.	0.2	3
90	Nuclear wave-packet dynamics in the localized excitons of halogen-bridged platinum complexes. Journal of Luminescence, 2004, 108, 167-171.	1.5	3

#	Article	IF	CITATIONS
91	Dynamics of high-density excitons in PbI2 studied by two-photon absorption. Journal of Luminescence, 2006, 119-120, 24-27.	1.5	3
92	Coherent phonon and surface-enhanced Raman scattering dynamics in solids. Journal of Luminescence, 2014, 152, 23-27.	1.5	3
93	Observation of Photoinduced Terahertz Gain in GaAs Quantum Wells: Evidence for Radiative Two-Exciton-to-Biexciton Scattering. Physical Review Letters, 2020, 125, 167401.	2.9	3
94	Nanoscale phase change on Ge2Sb2Te5 thin films induced by optical near fields with photoassisted scanning tunneling microscope. Applied Physics Letters, 2020, 117, 211102.	1.5	3
95	Observation of ultrafast amorphization dynamics in GeCu2Te3 thin films using echelon-based single-shot transient absorbance spectroscopy. Applied Physics Letters, 2021, 119, .	1.5	3
96	Urbach rule in the luminescence spectrum of HgI2 and a meta-stable localized exciton. Journal of Luminescence, 1988, 40-41, 481-482.	1.5	2
97	Localized and self-trapped exciton states in PbI2-PbBr2 mixed crystals. Journal of Luminescence, 1992, 53, 507-510.	1.5	2
98	Ultrafast self-trapping dynamics of excitons in quasi-one-dimensional halogen-bridged platinum complex. Journal of Luminescence, 1998, 76-77, 491-494.	1.5	2
99	Photoluminescence and photoinduced magnetic phase transition in an organic radical TTTA crystal studied by two-photon absorption. Journal of Luminescence, 2008, 128, 774-776.	1.5	2
100	Photoinduced phase transition in strongly correlated TTTA crystals probed with two-photon luminescence. Journal of Luminescence, 2009, 129, 1931-1933.	1.5	2
101	Energy transfer dynamics in light-harvesting small dendrimers studied by time-frequency two-dimensional imaging spectroscopy. Journal of Luminescence, 2009, 129, 1898-1900.	1.5	2
102	Electron–phonon coupling and defect scatterings in Ar ⁺ -ion implanted graphite. Journal of the Ceramic Society of Japan, 2013, 121, 291-294.	0.5	2
103	Long-lived photoinduced response observed under extreme photoexcitation densities in a one-dimensional Peierls insulator. Physical Review B, 2018, 98, .	1.1	2
104	Waveform sampling on an atomic scale. Nature Photonics, 2021, 15, 70-71.	15.6	2
105	Resonance Raman Scattering and Its Annealing Effect for Photo-Induced Defect States in Quasi-One-Dimensional Mixed-Valence Compound [Pt(en)2] [Pt(en)2Cl2] (ClO4)4. Molecular Crystals and Liquid Crystals, 1994, 256, 873-878.	0.3	1
106	<title>Inter-molecular and molecular-matrix interaction of photochromic compound furylfulgides</title> ., 1995,,.		1
107	Transient Absorption Spectroscopy of a Photochromic Dinitrobenzylpyridine. Molecular Crystals and Liquid Crystals, 2000, 345, 197-202.	0.3	1
108	Femtosecond relaxation dynamics of excitons in 1D CDW systems. Journal of Luminescence, 2001, 94-95, 653-657.	1.5	1

#	Article	IF	Citations
109	EXCITON DYNAMICS OF ORTHORHOMBIC PHASE Pbl2 EMBEDDED IN Pbl2-PbBr2 MIXED CRYSTALS. International Journal of Modern Physics B, 2001, 15, 3845-3848.	1.0	1
110	BRIDGING-HALOGEN DEPENDENCE OF ULTRAFAST DYNAMICS OF EXCITONS IN QUASI-ONE-DIMENSIONAL PLATINUM COMPLEXES. International Journal of Modern Physics B, 2001, 15, 3981-3984.	1.0	1
111	Photoinduced intramolecular proton transfer in 2- and 4-(2,4-dinitrobenzyl)pyridine. Journal of Luminescence, 2004, 108, 245-249.	1.5	1
112	Direct visualization of transient absorption by real-time pump-probe imaging spectroscopy. Springer Series in Chemical Physics, 2005, , 133-135.	0.2	1
113	Rapid energy transfer and ist temperature dependence in <i>π</i> onjugated dendrimers. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 77-80.	0.8	1
114	Electronic excited states of a strongly correlated organic radical 1,3,5-trithia-2,4,6-triazapentalenyl (TTTA) adsorbed on a Si(001) surface. Physical Chemistry Chemical Physics, 2013, 15, 19213.	1.3	1
115	Ultrafast quasiparticle dynamics of FeTe0.75Se0.25superconductor. EPJ Web of Conferences, 2013, 41, 03009.	0.1	1
116	Ultrafast Measurements of Coherent Vibrations in Benzenethiol Monolayer Film. EPJ Web of Conferences, 2013, 41, 05013.	0.1	1
117	Ultrafast optical control of multiple coherent phonons in silicon carbide using a pulse-shaping technique. Applied Physics Express, 2018, 11, 122701.	1.1	1
118	Sub-cycle Manipulation of Electrons in a Tunnel Junction with Phase-controlled Single-cycle THz Near-fields. EPJ Web of Conferences, 2019, 205, 08007.	0.1	1
119	Time- and Frequency-resolved Two-dimensional Transient Absorption Imaging of Î ² -Carotene in Solids. Springer Series in Chemical Physics, 2007, , 534-536.	0.2	1
120	Coherent Terahertz Excitation of Magnons to 30 T., 2018, , .		1
121	Observation of Ultrastrong Magnon-Magnon Coupling in YFeO3 Using Terahertz Magnetospectroscopy. , 2020, , .		1
122	Dynamics of coherent phonons in disordered graphite. , 2010, , .		1
123	Single-Shot Time-Frequency Imaging of Ultrashort Laser Pulses and Phonon-Polariton Propagation in Ferroelectric Materials. The Review of Laser Engineering, 2012, 40, 598.	0.0	1
124	Excitation energy dependence of the photoluminescence from self-trapped excitons in halogen-bridged mixed-valence platinum complexes. Synthetic Metals, 1992, 49, 117-122.	2.1	0
125	Resonance Raman scattering for mid-gap absorption bands in halogen-doped MX chains. Synthetic Metals, 1997, 86, 1927-1928.	2.1	0
126	Decay Processes of a Photo-Excited State in a Strong Electron-Phonon Coupling System Trans-[Pt(en)2Cl2](ClO4)2. Journal of the Physical Society of Japan, 2000, 69, 1576-1577.	0.7	0

#	Article	IF	Citations
127	Observation of the wave packet transit on the adiabatic potential surface of self-trapped excitons in halogen-bridged Pt complexes. Journal of Luminescence, 2000, 87-89, 844-846.	1.5	O
128	Visualization of the time dependent nuclear wave-packets in a localized optical center., 2003,,.		0
129	Diamagnetic to paramagnetic phase transition in an organic radical TTTA crystal induced by two-photon excitation. , 2005, , .		0
130	Excited-state dynamics of TTTA studied by femtosecond luminescence spectroscopy. Journal of Luminescence, 2007, 122-123, 529-531.	1.5	0
131	Luminescence properties and relaxation processes of strongly correlated organic radical TTTA crystals and molecules. Journal of Luminescence, 2008, 128, 789-791.	1.5	0
132	Ultrafast Laser Spectroscopy Applicable to Nano- and Micromaterials. Advances in Materials Research, 2008, , 97-119.	0.2	0
133	Carrier dynamics in ultrathin films of semimetal Bismuth studied with terahertz time-domain spectroscopy., 2011,,.		0
134	Photoluminescence dynamics in CuCl thin films under highâ€dense one―and twoâ€photon excitations. Physica Status Solidi C: Current Topics in Solid State Physics, 2012, 9, 2493-2496.	0.8	0
135	Single-shot terahertz spectrometer using an echelon mirror and air plasma. , 2013, , .		0
136	Broadband THz time-domain spectroscopy of halogen-bridged platinum complexes. , 2013, , .		0
137	Control of Phonon Polariton Propagation in LiNbO3 Single Crystals. , 2013, , .		0
138	E-mode Phonon-Polariton Dispersion in LiNbO3 Probed via Frequency-Resolved Coherent Phonon Spectroscopy. , 2013, , .		0
139	Ultrafast dynamics of the interlayer shearing mode in Au graphite nanostructures. , 2013, , .		0
140	Resonant Enhancement of Coherent Phonons in Carbon Nanotubes Observed with Sub-10fs Time Resolution. EPJ Web of Conferences, 2013, 41, 04028.	0.1	0
141	Nonlinear response of Au nanostructures observed with intense THz pulses. , 2014, , .		0
142	Carrier Dynamics of a Bismuth Thin Film Accelerated via Intense Terahertz Field., 2014, , .		0
143	Nonlinear Carrier Dynamics in Semi-Metal Bismuth Induced by Intense Terahertz Field. , 2014, , .		0
144	Terahertz Time-Domain Spectroscopy of Thin Films and Surfaces. Hyomen Kagaku, 2014, 35, 680-685.	0.0	0

#	Article	IF	CITATIONS
145	Electron Dynamics in a Gold Thin Film Accelerated via an Intense Terahertz Field., 2015, , .		0
146	Terahertz Response of Long-lived Photoexcited Electrons in Silicon Observed Using Single-shot Terahertz Spectroscopy. , $2015, , .$		0
147	Single-shot terahertz detection using a GHz bandwidth oscilloscope. , 2016, , .		0
148	Real-time mapping of high-frequency phonon-polariton dispersions in ferroelectric LiNbO <inf>3</inf> . , 2016, , .		0
149	Coherent control of the motion of electrons in a tunnel junction via single-cycle THz electric field. , 2016, , .		0
150	Petahertz optical drive with wide-bandgap materials., 2017,,.		0
151	THz-Field-Driven Electron Tunneling on the Nanoscale. , 2018, , .		0
152	Spectroscopic Measurement of Birefringent Materials by Simultaneous Acquisition of Two-Polarization-State THz Pulse Responses. , 2018, , .		0
153	Ultrafast carrier generation in Bi1-xSbx thin films induced by intense monocycle terahertz pulses. EPJ Web of Conferences, 2019, 205, 04016.	0.1	0
154	Electric dipole oscillation in solids characterized by Fourier transform extreme ultraviolet attosecond spectroscopy. EPJ Web of Conferences, 2019, 205, 02015.	0.1	0
155	Single-shot detection of terahertz waveforms using non-collinear time-encoding technique. , 2019, , .		0
156	Ionic Current in Superionic Conductor Na+ Beta-Alumina Induced by Terahertz Electric Fields., 2019,,.		0
157	Fano resonance of optical phonons in a multilayer graphene stack. Japanese Journal of Applied Physics, 0, , .	0.8	0
158	ULTRAFAST CARRIER DYNAMICS IN ZnO EPITAXIAL THIN FILMS STUDIED BY OPTICAL KERR GATE LUMINESCENCE SPECTROSCOPY., 2001,,.		0
159	BRIDGING-HALOGEN DEPENDENCE OF ULTRAFAST DYNAMICS OF EXCITONS IN QUASI-ONE-DIMENSIONAL PLATINUM COMPLEXES., 2001, , .		0
160	Time- and Frequency-resolved Two-dimensional Transient Absorption Imaging of \hat{l}^2 -Carotene in Solids. , 2006, , .		0
161	Organic Radical 1,3,5-Trithia-2,4,6-Triazapentalenyl (TTTA) as Strongly Correlated Electronic Systems: Experiment and Theory. Advances in Materials Research, 2008, , 143-169.	0.2	0
162	Time-Frequency Real-Time Imaging of Ultrashort Laser Pulses with a Single Echelon Mirror. , 2010, , .		0

#	Article	IF	CITATIONS
163	Nonlinear THz Spectroscopy on the Dielectric Thin Films. , 2010, , .		O
164	Ultrafast Photoinduced Phase Conversion to a Metallic State in Quasi-one–dimensional Platinum Complexes under Extremely High-density Excitation. , 2010, , .		0
165	Single-Shot Time-Frequency Imaging of Phonon-Polariton Dispersion in Ferroelectric LiNbO3., 2011,,.		0
166	Resonant Enhancement of Coherent Higher-Order Phonons in Single-Walled Carbon Nanotubes. , 2013, , .		0
167	Shingle-Shot Observation of THz Field with a Reflective Echelon Mirror. , 2013, , .		0
168	Single-shot Real-time Observation of Ultrafast Amorphization in Ge2Sb2Te5 Thin Film., 2014, , .		0
169	Electrochemical Control of Coherent Phonon Generations in Single-walled Metallic Carbon Nanotubes. , 2014, , .		O
170	Electrochemical Control of Coherent Phonon Generations in Single-Walled Metallic Carbon Nanotubes. Springer Proceedings in Physics, 2015, , 356-359.	0.1	0
171	Single-Shot Real-Time Observation of Ultrafast Amorphization in Ge2Sb2Te5 Thin Film. Springer Proceedings in Physics, 2015, , 352-355.	0.1	0
172	Nonlinear Carrier Dynamics in Semi-metal Bismuth Induced by Intense Terahertz Field. Springer Proceedings in Physics, 2015, , 633-636.	0.1	0
173	Time-Frequency Two-Dimensional Imaging Spectroscopy Using a Reflective Echelon Mirror. The Review of Laser Engineering, 2015, 43, 208.	0.0	0
174	Fast-Frame Single-Shot Acquisition of Ultrafast Waveforms. , 2016, , .		0
175	Femotosecond Carrier Dynamics of Metallic Single-Walled Carbon Nanotubes under Applied Bias-Voltage. , 2016, , .		O
176	Coherent Manipulation of Electrons in a Tunnel Junction with Carrier-Envelope Phase Controlled THz Electric Fields. , 2017 , , .		0
177	Chirality Dependent Coherent Phonon Dynamics in Carbon Nanotube Solutions. , 2017, , .		0
178	Ferroelectric Phonon-Polariton Dynamics in a Wide Temperature Range Revealed via Single-Shot Spectroscopy., 2017,,.		0
179	Carrier Multiplication in Bismuth Investigated with Intense THz pump-THz Probe Spectroscopy. , 2018, , .		0
180	Nanoscale Electron Manipulation Using Phase-controlled THz Near-fields., 2018,,.		0

#	ARTICLE	IF	CITATIONS
181	Nonlinear terahertz dynamics of Dirac electrons in Bi thin films. , 2018, , .		O
182	Ultrastrong Coupling of Two Terahertz Magnon Modes in YFeO3 in Pulsed High Magnetic Fields. , 2019, , .		0
183	Ultrafast Electron Manipulation Using THz Scanning Tunneling Microscopy With Tailor-Made Near Fields. , 2019, , .		O
184	Ultrafast Dynamics in Ge2Sb2Te5 Thin Films during Laser-Induced Successive Surface Modification. , 2020, , .		0
185	Supercontinuum spectral phase interferometry with isolated attosecond pulse. , 2020, , .		0