
Tim Maisch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2968149/publications.pdf Version: 2024-02-01

Тім Мліясн

#	Article	IF	CITATIONS
1	Antimicrobial photodynamic therapy – what we know and what we don't. Critical Reviews in Microbiology, 2018, 44, 571-589.	2.7	533
2	Photoantimicrobials—are we afraid of the light?. Lancet Infectious Diseases, The, 2017, 17, e49-e55.	4.6	498
3	The role of singlet oxygen and oxygen concentration in photodynamic inactivation of bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 7223-7228.	3.3	355
4	Anti-microbial photodynamic therapy: useful in the future?. Lasers in Medical Science, 2007, 22, 83-91.	1.0	297
5	Singlet Oxygen Generation by UVA Light Exposure of Endogenous Photosensitizers. Biophysical Journal, 2006, 91, 1452-1459.	0.2	283
6	Antibacterial photodynamic therapy in dermatology. Photochemical and Photobiological Sciences, 2004, 3, 907.	1.6	269
7	Resistance Toward Chlorhexidine in Oral Bacteria – Is There Cause for Concern?. Frontiers in Microbiology, 2019, 10, 587.	1.5	239
8	Resistance in antimicrobial photodynamic inactivation of bacteria. Photochemical and Photobiological Sciences, 2015, 14, 1518-1526.	1.6	231
9	Light-Induced Decomposition of Indocyanine Green. , 2008, 49, 1777.		221
10	Photodynamic Effects of Novel XF Porphyrin Derivatives on Prokaryotic and Eukaryotic Cells. Antimicrobial Agents and Chemotherapy, 2005, 49, 1542-1552.	1.4	216
11	A New Strategy to Destroy Antibiotic Resistant Microorganisms: Antimicrobial Photodynamic Treatment. Mini-Reviews in Medicinal Chemistry, 2009, 9, 974-983.	1.1	214
12	Antimicrobial photodynamic therapy for inactivation of biofilms formed by oral key pathogens. Frontiers in Microbiology, 2014, 5, 405.	1.5	183
13	Decolonisation of MRSA, S. aureus and E. coli by Cold-Atmospheric Plasma Using a Porcine Skin Model In Vitro. PLoS ONE, 2012, 7, e34610.	1.1	148
14	Randomized placeboâ€controlled human pilot study of cold atmospheric argon plasma on skin graft donor sites. Wound Repair and Regeneration, 2013, 21, 800-807.	1.5	126
15	Photodynamic inactivation for controlling Candida albicans infections. Fungal Biology, 2012, 116, 1-10.	1.1	112
16	Direct Detection of Singlet Oxygen Generated by UVA Irradiation in Human Cells and Skin. Journal of Investigative Dermatology, 2007, 127, 1498-1506.	0.3	109
17	Fast and Effective Photodynamic Inactivation of Multiresistant Bacteria by Cationic Riboflavin Derivatives. PLoS ONE, 2014, 9, e111792.	1.1	108
18	Photodynamic biofilm inactivation by SAPYR—An exclusive singlet oxygen photosensitizer. Free Radical Biology and Medicine, 2013, 65, 477-487.	1.3	106

Тім Maisch

#	Article	IF	CITATIONS
19	Contact-Free Inactivation of Candida albicans Biofilms by Cold Atmospheric Air Plasma. Applied and Environmental Microbiology, 2012, 78, 4242-4247.	1.4	96
20	Cetylpyridinium Chloride: Mechanism of Action, Antimicrobial Efficacy in Biofilms, and Potential Risks of Resistance. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	96
21	Blue light kills Aggregatibacter actinomycetemcomitans due to its endogenous photosensitizers. Clinical Oral Investigations, 2014, 18, 1763-1769.	1.4	94
22	Penetration enhancement of two topical 5â€aminolaevulinic acid formulations for photodynamic therapy by erbium:YAG laser ablation of the stratum corneum: continuous versus fractional ablation. Experimental Dermatology, 2010, 19, 806-812.	1.4	93
23	Improving Photodynamic Inactivation of Bacteria in Dentistry: Highly Effective and Fast Killing of Oral Key Pathogens with Novel Tooth-Colored Type-II Photosensitizers. Journal of Medicinal Chemistry, 2014, 57, 5157-5168.	2.9	84
24	Singlet oxygen generation in porphyrin-doped polymeric surface coating enables antimicrobial effects onStaphylococcus aureus. Physical Chemistry Chemical Physics, 2014, 16, 20598-20607.	1.3	81
25	Investigation of the mutagenic potential of cold atmospheric plasma at bactericidal dosages. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2013, 753, 23-28.	0.9	77
26	Fluorescence induction of protoporphyrin IX by a new 5â€aminolevulinic acid nanoemulsion used for photodynamic therapy in a fullâ€ŧhickness <i>ex vivo</i> skin model. Experimental Dermatology, 2010, 19, e302-5.	1.4	72
27	Determination of the antibacterial efficacy of a new porphyrin-based photosensitizer against MRSA ex vivo. Photochemical and Photobiological Sciences, 2007, 6, 545.	1.6	63
28	Antimicrobial photodynamic therapy as an adjunct for treatment of deep carious lesions—A systematic review. Photodiagnosis and Photodynamic Therapy, 2017, 18, 54-62.	1.3	59
29	Fungicidal photodynamic effect of a twofold positively charged porphyrin against <i>Candida albicans</i> planktonic cells and biofilms. Future Microbiology, 2013, 8, 785-797.	1.0	57
30	Photodynamic inactivation of multiâ€resistant bacteria (PIB) – a new approach to treat superficial infections in the 21 st century. JDDG - Journal of the German Society of Dermatology, 2011, 9, 360-366.	0.4	51
31	Investigation of toxicity and mutagenicity of cold atmospheric argon plasma. Environmental and Molecular Mutagenesis, 2017, 58, 172-177.	0.9	51
32	Fast and effective: intense pulse light photodynamic inactivation of bacteria. Journal of Industrial Microbiology and Biotechnology, 2012, 39, 1013-1021.	1.4	50
33	Dirty hands: photodynamic killing of human pathogens like EHEC, MRSA and Candida within seconds. Photochemical and Photobiological Sciences, 2012, 12, 135-147.	1.6	47
34	A Comprehensive Tutorial onIn VitroCharacterization of New Photosensitizers for Photodynamic Antitumor Therapy and Photodynamic Inactivation of Microorganisms. BioMed Research International, 2013, 2013, 1-17.	0.9	47
35	The impact of absorbed photons on antimicrobial photodynamic efficacy. Frontiers in Microbiology, 2015, 6, 706.	1.5	45
36	Combination of 10% EDTA, Photosan, and a blue light hand-held photopolymerizer to inactivate leading oral bacteria in dentistry <i>in vitro</i> . Journal of Applied Microbiology, 2009, 107, 1569-1578.	1.4	43

Тім Maisch

#	Article	IF	CITATIONS
37	Hydrogen Bond Acceptors and Additional Cationic Charges in Methylene Blue Derivatives: Photophysics and Antimicrobial Efficiency. BioMed Research International, 2013, 2013, 1-12.	0.9	41
38	Antibacterial efficacy of cold atmospheric plasma against Enterococcus faecalis planktonic cultures and biofilms in vitro. PLoS ONE, 2019, 14, e0223925.	1.1	39
39	Contact-free inactivation of Trichophyton rubrum and Microsporum canis by cold atmospheric plasma treatment. Future Microbiology, 2013, 8, 1097-1106.	1.0	38
40	A novel set of symmetric methylene blue derivatives exhibits effective bacteria photokilling — a structure — response study. Photochemical and Photobiological Sciences, 2015, 14, 335-351.	1.6	34
41	A comparative study on the antibacterial photodynamic efficiency of a curcumin derivative and a formulation on a porcine skin model. Photochemical and Photobiological Sciences, 2016, 15, 187-195.	1.6	34
42	Contact-free cold atmospheric plasma treatment of <i>Deinococcus radiodurans</i> . Journal of Industrial Microbiology and Biotechnology, 2012, 39, 1367-1375.	1.4	33
43	Time dependence of singlet oxygen luminescence provides an indication of oxygen concentration during oxygen consumption. Journal of Biomedical Optics, 2007, 12, 064008.	1.4	28
44	Fatty acids and vitamins generate singlet oxygen under UVB irradiation. Experimental Dermatology, 2012, 21, 135-139.	1.4	26
45	The impact of cationic substituents in phenalen-1-one photosensitizers on antimicrobial photodynamic efficacy. Photochemical and Photobiological Sciences, 2016, 15, 57-68.	1.6	24
46	CureCuma–cationic curcuminoids with improved properties and enhanced antimicrobial photodynamic activity. European Journal of Medicinal Chemistry, 2018, 159, 423-440.	2.6	24
47	Photodynamische Inaktivierung von multiresistenten Bakterien (PIB) - ein neuer Ansatz zur Behandlung oberflÄ g hlicher Infektionen im 21. Jahrhundert. JDDG - Journal of the German Society of Dermatology, 2011, 9, 360-367.	0.4	22
48	XF drugs: A new family of antibacterials. Drug News and Perspectives, 2010, 23, 167.	1.9	22
49	A helpful technology – the luminescence detection of singlet oxygen to investigate photodynamic inactivation of bacteria (PDIB). Journal of Biophotonics, 2010, 3, 319-327.	1.1	21
50	Phenalen-1-One-Mediated Antimicrobial Photodynamic Therapy and Chlorhexidine Applied to a Novel Caries Biofilm Model. Caries Research, 2018, 52, 447-453.	0.9	21
51	A HCl/alcohol formulation increased 5â€aminolevulinic acid skin distribution using an <i>ex vivo</i> full thickness porcine skin model. Experimental Dermatology, 2008, 17, 813-820.	1.4	20
52	Photodynamic Inactivation of Root Canal Bacteria by Light Activation through Human Dental Hard and Simulated Surrounding Tissue. Frontiers in Microbiology, 2016, 7, 929.	1.5	19
53	Phenalen-1-one-Mediated Antimicrobial Photodynamic Therapy: Antimicrobial Efficacy in a Periodontal Biofilm Model and Flow Cytometric Evaluation of Cytoplasmic Membrane Damage. Frontiers in Microbiology, 2018, 9, 688.	1.5	19
54	Antimicrobial efficacy of irradiation with visible light on oral bacteria <i>in vitro</i> : a systematic review. Future Medicinal Chemistry, 2017, 9, 1557-1574.	1.1	18

Тім Maisch

0

#	Article	IF	CITATIONS
55	Insights Into Mechanisms of Antimicrobial Photodynamic Action Toward Biofilms Using Phenalen-1-One Derivatives as Photosensitizers. Frontiers in Microbiology, 2020, 11, 589364.	1.5	18
56	Membrane damage as mechanism of photodynamic inactivation using Methylene blue and TMPyP in Escherichia coli and Staphylococcus aureus. Photochemical and Photobiological Sciences, 2022, 21, 209-220.	1.6	18
57	Fast and effective inactivation of Bacillus atrophaeus endospores using light-activated derivatives of vitamin B2. Photochemical and Photobiological Sciences, 2015, 14, 387-396.	1.6	17
58	Light-activated phenalen-1-one bactericides: efficacy, toxicity and mechanism compared with benzalkonium chloride. Future Microbiology, 2017, 12, 1297-1310.	1.0	16
59	Intense pulse light and 5â€ALA PDT: Phototoxic effects in vitro depend on the spectral overlap with protoporphyrine IX but do not match cutâ€off filter notations. Lasers in Surgery and Medicine, 2011, 43, 176-182.	1.1	15
60	Realâ€ŧime imaging of photodynamic action in bacteria. Journal of Biophotonics, 2017, 10, 264-270.	1.1	14
61	Susceptibility of sodA- and sodB-deficient Escherichia coli mutant towards antimicrobial photodynamic inactivation via the type l-mechanism of action. Photochemical and Photobiological Sciences, 2018, 17, 352-362.	1.6	14
62	Ecological Effects of Daily Antiseptic Treatment on Microbial Composition of Saliva-Grown Microcosm Biofilms and Selection of Resistant Phenotypes. Frontiers in Microbiology, 0, 13, .	1.5	13
63	Revitalized Strategies Against Multi-Resistant Bacteria: Antimicrobial Photodynamic Therapy and Bacteriophage Therapy. Anti-Infective Agents in Medicinal Chemistry, 2007, 6, 145-150.	0.6	11
64	Ion-induced stacking of photosensitizer molecules can remarkably affect the luminescence detection of singlet oxygen inCandida albicanscells. Journal of Biomedical Optics, 2013, 18, 045002.	1.4	10
65	Individual growth detection of bacterial species in an in vitro oral polymicrobial biofilm model. Archives of Microbiology, 2014, 196, 819-828.	1.0	9
66	Photoantimicrobials—An update. Translational Biophotonics, 2020, 2, e201900033.	1.4	9
67	Spatial Distribution of a Porphyrin-Based Photosensitizer Reveals Mechanism of Photodynamic Inactivation of Candida albicans. Frontiers in Medicine, 2021, 8, 641244.	1.2	9
68	Luminescence spectroscopy of singlet oxygen enables monitoring of oxygen consumption in biological systems consisting of fatty acids. Physical Chemistry Chemical Physics, 2013, 15, 11386.	1.3	6
69	The Latest Time Point of Retreatment (LTPR) as a Novel Method to Determine Antibacterial Effects for Binary Use of Cold Atmospheric Plasma and Conventional Agents. Frontiers in Microbiology, 2020, 11, 576500.	1.5	4
70	Active vs. standard sun protection in patients with melanoma stage I or II: a randomized controlled feasibility trial assessing compliance with sun protection and quality of life. British Journal of Dermatology, 2020, 183, 1132-1134.	1.4	1
71	Title is missing!. , 2019, 14, e0223925.		0

#	Article	IF	CITATIONS
73	Title is missing!. , 2019, 14, e0223925.		Ο
74	Title is missing!. , 2019, 14, e0223925.		0