Gael Cristofari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/296747/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Telomere length homeostasis requires that telomerase levels are limiting. EMBO Journal, 2006, 25, 565-574.	7.8	282
2	Epigenetic switch drives the conversion of fibroblasts into proinvasive cancer-associated fibroblasts. Nature Communications, 2015, 6, 10204.	12.8	273
3	Reevaluation of telomerase inhibition by quadruplex ligands and their mechanisms of action. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 17347-17352.	7.1	265
4	RNA-mediated interference and reverse transcription control the persistence of RNA viruses in the insect model Drosophila. Nature Immunology, 2013, 14, 396-403.	14.5	225
5	Integration site selection by retroviruses and transposable elements in eukaryotes. Nature Reviews Genetics, 2017, 18, 292-308.	16.3	215
6	Measuring and interpreting transposable element expression. Nature Reviews Genetics, 2020, 21, 721-736.	16.3	211
7	TIN2-Tethered TPP1 Recruits Human Telomerase to Telomeres <i>In Vivo</i> . Molecular and Cellular Biology, 2010, 30, 2971-2982.	2.3	206
8	Virus-derived DNA drives mosquito vector tolerance to arboviral infection. Nature Communications, 2016, 7, 12410.	12.8	199
9	Human Telomerase RNA Accumulation in Cajal Bodies Facilitates Telomerase Recruitment to Telomeres and Telomere Elongation. Molecular Cell, 2007, 27, 882-889.	9.7	161
10	The ubiquitous nature of RNA chaperone proteins. Progress in Molecular Biology and Translational Science, 2002, 72, 223-268.	1.9	156
11	Activation of individual L1 retrotransposon instances is restricted to cell-type dependent permissive loci. ELife, 2016, 5, .	6.0	136
12	Structure of active dimeric human telomerase. Nature Structural and Molecular Biology, 2013, 20, 454-460.	8.2	115
13	The Landscape of L1 Retrotransposons in the Human Genome Is Shaped by Pre-insertion Sequence Biases and Post-insertion Selection. Molecular Cell, 2019, 74, 555-570.e7.	9.7	107
14	The hepatitis C virus Core protein is a potent nucleic acid chaperone that directs dimerization of the viral (+) strand RNA in vitro. Nucleic Acids Research, 2004, 32, 2623-2631.	14.5	104
15	Post-Transcriptional Control of LINE-1 Retrotransposition by Cellular Host Factors in Somatic Cells. Frontiers in Cell and Developmental Biology, 2016, 4, 14.	3.7	69
16	The Gag-like Protein of the Yeast Ty1 Retrotransposon Contains a Nucleic Acid Chaperone Domain Analogous to Retroviral Nucleocapsid Proteins. Journal of Biological Chemistry, 2000, 275, 19210-19217.	3.4	60
17	euL1db: the European database of L1HS retrotransposon insertions in humans. Nucleic Acids Research, 2015, 43, D43-D47.	14.5	60
18	The Specificity and Flexibility of L1 Reverse Transcription Priming at Imperfect T-Tracts. PLoS Genetics, 2013, 9, e1003499.	3.5	59

GAEL CRISTOFARI

#	Article	IF	CITATIONS
19	Nucleocapsid protein of human immunodeficiency virus as a model protein with chaperoning functions and as a target for antiviral drugs. Advances in Pharmacology, 2000, 48, 345-372.	2.0	51
20	FSHD1 and FSHD2 form a disease continuum. Neurology, 2019, 92, e2273-e2285.	1.1	50
21	A 5'-3' long-range interaction in Ty1 RNA controls its reverse transcription and retrotransposition. EMBO Journal, 2002, 21, 4368-4379.	7.8	43
22	Dismantling papillary renal cell carcinoma classification: The heterogeneity of genetic profiles suggests several independent diseases. Genes Chromosomes and Cancer, 2015, 54, 369-382.	2.8	41
23	The tumor suppressor microRNA let-7 inhibits human LINE-1 retrotransposition. Nature Communications, 2020, 11, 5712.	12.8	37
24	Low- to high-throughput analysis of telomerase modulators with Telospot. Nature Methods, 2007, 4, 851-853.	19.0	32
25	Characterization of Active Reverse Transcriptase and Nucleoprotein Complexes of the Yeast Retrotransposon Ty3 in Vitro. Journal of Biological Chemistry, 1999, 274, 36643-36648.	3.4	29
26	TASOR epigenetic repressor cooperates with a CNOT1 RNA degradation pathway to repress HIV. Nature Communications, 2022, 13, 66.	12.8	24
27	L1 retrotransposition. Mobile Genetic Elements, 2014, 4, e28907.	1.8	21
28	Telomerase Unplugged. ACS Chemical Biology, 2007, 2, 155-158.	3.4	16
29	The catalytic and the RNA subunits of human telomerase are required to immortalize equid primary fibroblasts. Chromosoma, 2012, 121, 475-488.	2.2	13
30	Fingering the Ends. Cell, 2003, 113, 552-554.	28.9	10
31	Meningeal SWI/SNF related, matrix-associated, actin-dependent regulator of chromatin, subfamily B member 1 (SMARCB1)-deficient tumours: an emerging group of meningeal tumours. Neuropathology and Applied Neurobiology, 2017, 43, 433-449.	3.2	9
32	Locus-specific chromatin profiling of evolutionarily young transposable elements. Nucleic Acids Research, 2022, 50, e33-e33.	14.5	9
33	An Affinity Oligonucleotide Displacement Strategy to Purify Ribonucleoprotein Complexes Applied to Human Telomerase. Methods in Molecular Biology, 2008, 488, 9-22.	0.9	8
34	A single zinc finger optimizes the DNA interactions of the nucleocapsid protein of the yeast retrotransposon Ty3. Nucleic Acids Research, 2012, 40, 751-760.	14.5	7
35	Inflammatory facioscapulohumeral muscular dystrophy type 2 in 18p deletion syndrome. American Journal of Medical Genetics, Part A, 2018, 176, 1760-1763.	1.2	6
36	Biochemical Approaches to Study LINE-1 Reverse Transcriptase Activity In Vitro. Methods in Molecular Biology, 2016, 1400, 357-376.	0.9	4

GAEL CRISTOFARI

#	Article	IF	CITATIONS
37	The OncoAge Consortium: Linking Aging and Oncology from Bench to Bedside and Back Again. Cancers, 2019, 11, 250.	3.7	2
38	International Congress on Transposable elements (ICTE 2016) in Saint Malo: mobile elements under the sun of Brittany. Mobile DNA, 2016, 7, 19.	3.6	1
39	Nascent RNA m6A modification at the heart of the gene–retrotransposon conflict. Cell Research, 2021, 31, 829-831.	12.0	1
40	DNA Interaction Properties of Nucleic Acid Chaperone Proteins from Retrotransposons. Biophysical Journal, 2009, 96, 61a-62a.	0.5	0
41	Nucleic Acid Chaperone Activity of the Yeast Ty3 Retrotransposon Nucleocapsid Protein. Biophysical Journal, 2010, 98, 267a.	0.5	0
42	International Congress on Transposable Elements (ICTE) 2012 in Saint Malo and the sea of TE stories. Mobile DNA, 2012, 3, 17.	3.6	0