Maria Cristina Bonferoni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2967065/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Maltodextrin-amino acids electrospun scaffolds cross-linked with Maillard-type reaction for skin tissue engineering. Materials Science and Engineering C, 2022, 133, 112593.	7.3	12
2	Ternary systems of terbinafine hydrochloride inclusion complexes. , 2022, , .		0
3	Native Cyclodextrins as Complexation Agents for Pterostilbene: Complex Preparation and Characterization in Solution and in the Solid State. Pharmaceutics, 2022, 14, 8.	4.5	8
4	Inorganic Nanomaterials in Tissue Engineering. Pharmaceutics, 2022, 14, 1127.	4.5	26
5	Innovative Strategies in Tendon Tissue Engineering. Pharmaceutics, 2021, 13, 89.	4.5	34
6	Gellan-Based Composite System as a Potential Tool for the Treatment of Nervous Tissue Injuries: Cross-Linked Electrospun Nanofibers Embedded in a RC-33-Loaded Freeze-Dried Matrix. Pharmaceutics, 2021, 13, 164.	4.5	12
7	Exposure to airborne formaldehyde: Sampling and analytical methods—A review. Trends in Environmental Analytical Chemistry, 2021, 29, e00116.	10.3	20
8	A Composite Nanosystem as a Potential Tool for the Local Treatment of Glioblastoma: Chitosan-Coated Solid Lipid Nanoparticles Embedded in Electrospun Nanofibers. Polymers, 2021, 13, 1371.	4.5	12
9	Crocetin as New Cross-Linker for Bioactive Sericin Nanoparticles. Pharmaceutics, 2021, 13, 680.	4.5	8
10	An Upgrade of Apparatus and Measurement Systems for Generation of Gaseous Formaldehyde: A Review. Critical Reviews in Analytical Chemistry, 2021, , 1-15.	3.5	0
11	Versatile Nasal Application of Cyclodextrins: Excipients and/or Actives?. Pharmaceutics, 2021, 13, 1180.	4.5	13
12	Chitosan-Coated Poly(lactic acid) Nanofibres Loaded with Essential Oils for Wound Healing. Polymers, 2021, 13, 2582.	4.5	24
13	Biomaterials for Soft Tissue Repair and Regeneration: A Focus on Italian Research in the Field. Pharmaceutics, 2021, 13, 1341.	4.5	20
14	Synergy of Hydeal-D® and Hyaluronic Acid for Protecting and Restoring Urothelium: In Vitro Characterization. Pharmaceutics, 2021, 13, 1450.	4.5	3
15	Electrochemotherapy of Deep-Seated Tumors: State of Art and Perspectives as Possible "EPR Effect Enhancer―to Improve Cancer Nanomedicine Efficacy. Cancers, 2021, 13, 4437.	3.7	17
16	Electrospun Scaffolds in Periodontal Wound Healing. Polymers, 2021, 13, 307.	4.5	29
17	Chitosan Oleate Coated PLGA Nanoparticles as siRNA Drug Delivery System. Pharmaceutics, 2021, 13, 1716.	4.5	11
18	Smart Device for Biologically Enhanced Functional Regeneration of Osteo–Tendon Interface.	4.5	8

^o Pharmaceutics, 2021, 13, 1996.

#	Article	IF	CITATIONS
19	Dual-Functioning Scaffolds for the Treatment of Spinal Cord Injury: Alginate Nanofibers Loaded with the Sigma 1 Receptor (S1R) Agonist RC-33 in Chitosan Films. Marine Drugs, 2020, 18, 21.	4.6	21
20	(Trans)buccal drug delivery. , 2020, , 225-250.		6
21	DoE-Assisted Development of a Novel Glycosaminoglycan-Based Injectable Formulation for Viscosupplementation. Pharmaceutics, 2020, 12, 681.	4.5	2
22	Nanotechnology-Based Medical Devices for the Treatment of Chronic Skin Lesions: From Research to the Clinic. Pharmaceutics, 2020, 12, 815.	4.5	27
23	Recent Advances in the Development of In Situ Gelling Drug Delivery Systems for Non-Parenteral Administration Routes. Pharmaceutics, 2020, 12, 859.	4.5	85
24	Collagen/PCL Nanofibers Electrospun in Green Solvent by DOE Assisted Process. An Insight into Collagen Contribution. Materials, 2020, 13, 4698.	2.9	28
25	Chitosan Nanoparticles for Therapy and Theranostics of Hepatocellular Carcinoma (HCC) and Liver-Targeting. Nanomaterials, 2020, 10, 870.	4.1	33
26	Wound Healing Activity of Nanoclay/Spring Water Hydrogels. Pharmaceutics, 2020, 12, 467.	4.5	26
27	Halloysite- and Montmorillonite-Loaded Scaffolds as Enhancers of Chronic Wound Healing. Pharmaceutics, 2020, 12, 179.	4.5	31
28	Inclusion of the Phytoalexin trans-Resveratrol in Native Cyclodextrins: A Thermal, Spectroscopic, and X-Ray Structural Study. Molecules, 2020, 25, 998.	3.8	12
29	Nose-to-Brain Delivery. Pharmaceutics, 2020, 12, 138.	4.5	36
30	Indocyanine Green Loaded Polymeric Nanoparticles: Physicochemical Characterization and Interaction Studies with Caco-2 Cell Line by Light and Transmission Electron Microscopy. Nanomaterials, 2020, 10, 133.	4.1	10
31	Norfloxacin-Loaded Electrospun Scaffolds: Montmorillonite Nanocomposite vs. Free Drug. Pharmaceutics, 2020, 12, 325.	4.5	31
32	Design of Experiments-Assisted Development of Clotrimazole-Loaded Ionic Polymeric Micelles Based on Hyaluronic Acid. Nanomaterials, 2020, 10, 635.	4.1	8
33	Nose-to-Brain Delivery of Antioxidants as a Potential Tool for the Therapy of Neurological Diseases. Pharmaceutics, 2020, 12, 1246.	4.5	15
34	Recent advances in the mucus-interacting approach for vaginal drug delivery: from mucoadhesive to mucus-penetrating nanoparticles. Expert Opinion on Drug Delivery, 2019, 16, 777-781.	5.0	34
35	Antibacterial activity of Na-clinoptilolite against Helicobacter pylori: in-vitro tests, synergistic effect with amoxicillin and stability of the antibiotic formulated with the zeolite. Microporous and Mesoporous Materials, 2019, 288, 109592.	4.4	8
36	Chitosan/Glycosaminoglycan Scaffolds: The Role of Silver Nanoparticles to Control Microbial Infections in Wound Healing. Polymers, 2019, 11, 1207.	4.5	59

#	Article	IF	CITATIONS
37	<p>Montmorillonite-norfloxacin nanocomposite intended for healing of infected wounds</p> . International Journal of Nanomedicine, 2019, Volume 14, 5051-5060.	6.7	37
38	Platelet lysate loaded electrospun scaffolds: Effect of nanofiber types on wound healing. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 142, 247-257.	4.3	31
39	The role of chitosan as coating material for nanostructured lipid carriers for skin delivery of fucoxanthin. International Journal of Pharmaceutics, 2019, 567, 118487.	5.2	41
40	Development of a Mucoadhesive in Situ Gelling Formulation for the Delivery of Lactobacillus gasseri into Vaginal Cavity. Pharmaceutics, 2019, 11, 511.	4.5	21
41	Chitosan Oleate Coated Poly Lactic-Glycolic Acid (PLGA) Nanoparticles versus Chitosan Oleate Self-Assembled Polymeric Micelles, Loaded with Resveratrol. Marine Drugs, 2019, 17, 515.	4.6	19
42	Chitosan/glycosaminoglycan scaffolds for skin reparation. Carbohydrate Polymers, 2019, 220, 219-227.	10.2	59
43	Hyaluronic acid and chitosan-based nanosystems: a new dressing generation for wound care. Expert Opinion on Drug Delivery, 2019, 16, 715-740.	5.0	74
44	Bioactive Medications for the Delivery of Platelet Derivatives to Skin Wounds. Current Drug Delivery, 2019, 16, 472-483.	1.6	10
45	Development of a Mucoadhesive and an in Situ Gelling Formulation Based on κ-Carrageenan for Application on Oral Mucosa and Esophagus Walls. II. Loading of a Bioactive Hydroalcoholic Extract. Marine Drugs, 2019, 17, 153.	4.6	20
46	Uptake in the Central Nervous System of Geraniol Oil Encapsulated in Chitosan Oleate Following Nasal and Oral Administration. Pharmaceutics, 2019, 11, 106.	4.5	13
47	Nanoemulsions for "Nose-to-Brain―Drug Delivery. Pharmaceutics, 2019, 11, 84.	4.5	158
48	Development of a Mucoadhesive and In Situ Gelling Formulation Based on κ-Carrageenan for Application on Oral Mucosa and Esophagus Walls. I. A Functional In Vitro Characterization. Marine Drugs, 2019, 17, 112.	4.6	14
49	An In Situ Gelling System for the Local Treatment of Inflammatory Bowel Disease (IBD). The Loading of Maqui (Aristotelia Chilensis) Berry Extract as an Antioxidant and Anti-Inflammatory Agent. Pharmaceutics, 2019, 11, 611.	4.5	17
50	In Situ Gelling Scaffolds Loaded with Platelet Growth Factors to Improve Cardiomyocyte Survival after Ischemia. ACS Biomaterials Science and Engineering, 2019, 5, 329-338.	5.2	11
51	Essential oil-loaded lipid nanoparticles for wound healing. International Journal of Nanomedicine, 2018, Volume 13, 175-186.	6.7	151
52	Lymph node metastases: importance of detection and treatment strategies. Expert Opinion on Drug Delivery, 2018, 15, 459-467.	5.0	26
53	Freeze dried chitosan acetate dressings with glycosaminoglycans and traxenamic acid. Carbohydrate Polymers, 2018, 184, 408-417.	10.2	43
54	Rheological analysis and mucoadhesion: A 30 year-old and still active combination. Journal of Pharmaceutical and Biomedical Analysis, 2018, 156, 232-238.	2.8	42

#	Article	IF	CITATIONS
55	A novel dressing for the combined delivery of platelet lysate and vancomycin hydrochloride to chronic skin ulcers: Hyaluronic acid particles in alginate matrices. European Journal of Pharmaceutical Sciences, 2018, 118, 87-95.	4.0	30
56	Alpha tocopherol loaded chitosan oleate nanoemulsions for wound healing. Evaluation on cell lines and ex vivo human biopsies, and stabilization in spray dried Trojan microparticles. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 123, 31-41.	4.3	57
57	Coated electrospun alginate-containing fibers as novel delivery systems for regenerative purposes. International Journal of Nanomedicine, 2018, Volume 13, 6531-6550.	6.7	26
58	Chitosan Oleate Salt as an Amphiphilic Polymer for the Surface Modification of Poly-Lactic-Glycolic Acid (PLGA) Nanoparticles. Preliminary Studies of Mucoadhesion and Cell Interaction Properties. Marine Drugs, 2018, 16, 447.	4.6	9
59	Electrospun Alginate Fibers: Mixing of Two Different Poly(ethylene oxide) Grades to Improve Fiber Functional Properties. Nanomaterials, 2018, 8, 971.	4.1	25
60	Effects of Particle Size, Surface Nature and Crystal Type on Dissolution Rate. AAPS Advances in the Pharmaceutical Sciences Series, 2018, , 303-328.	0.6	4
61	Nanoparticles in detection and treatment of lymph node metastases: an update from the point of view of administration routes. Expert Opinion on Drug Delivery, 2018, 15, 1117-1126.	5.0	6
62	Association of Alpha Tocopherol and Ag Sulfadiazine Chitosan Oleate Nanocarriers in Bioactive Dressings Supporting Platelet Lysate Application to Skin Wounds. Marine Drugs, 2018, 16, 56.	4.6	19
63	Electrospun Gelatin–Chondroitin Sulfate Scaffolds Loaded with Platelet Lysate Promote Immature Cardiomyocyte Proliferation. Polymers, 2018, 10, 208.	4.5	24
64	Biodegradable Microspheres as Intravitreal Delivery Systems for Prolonged Drug Release. What is their Eminence in the Nanoparticle Era?. Current Drug Delivery, 2018, 15, 930-940.	1.6	15
65	The effect of the antioxidant on the properties of thiolated poly(aspartic acid) polymers in aqueous ocular formulations. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 113, 178-187.	4.3	6
66	A novel ionic amphiphilic chitosan derivative as a stabilizer of nanoemulsions: Improvement of antimicrobial activity of Cymbopogon citratus essential oil. Colloids and Surfaces B: Biointerfaces, 2017, 152, 385-392.	5.0	48
67	Halloysite and chitosan oligosaccharide nanocomposite for wound healing. Acta Biomaterialia, 2017, 57, 216-224.	8.3	125
68	Freeze-dried cylinders carrying chitosan nanoparticles for vaginal peptide delivery. Carbohydrate Polymers, 2017, 170, 43-51.	10.2	52
69	Carvacrol/clay hybrids loaded into in situ gelling films. International Journal of Pharmaceutics, 2017, 531, 676-688.	5.2	47
70	The effect of thiol content on the gelation and mucoadhesion of thiolated poly(aspartic acid). Polymer International, 2017, 66, 1538-1545.	3.1	23
71	Nanoparticle formulations to enhance tumor targeting of poorly soluble polyphenols with potential anticancer properties. Seminars in Cancer Biology, 2017, 46, 205-214.	9.6	73
72	Application of DoE approach in the development of mini-capsules, based on biopolymers and manuka honey polar fraction, as powder formulation for the treatment of skin ulcers. International Journal of Pharmaceutics, 2017, 516, 266-277.	5.2	9

#	Article	IF	CITATIONS
73	Chitosan-coupled solid lipid nanoparticles: Tuning nanostructure and mucoadhesion. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 110, 13-18.	4.3	57
74	Chitosan Ascorbate Nanoparticles for the Vaginal Delivery of Antibiotic Drugs in Atrophic Vaginitis. Marine Drugs, 2017, 15, 319.	4.6	34
75	Marrubium vulgare L. Leave Extract: Phytochemical Composition, Antioxidant and Wound Healing Properties. Molecules, 2017, 22, 1851.	3.8	55
76	Nanofiber Scaffolds as Drug Delivery Systems to Bridge Spinal Cord Injury. Pharmaceuticals, 2017, 10, 63.	3.8	35
77	Wound Healing: Hemoderivatives and Biopolymers. , 2017, , 1642-1660.		1
78	Design and criteria of electrospun fibrous scaffolds for the treatment of spinal cord injury. Neural Regeneration Research, 2017, 12, 1786.	3.0	26
79	Cationic Thiolated Poly(aspartamide) Polymer as a Potential Excipient for Artificial Tear Formulations. Journal of Ophthalmology, 2016, 2016, 1-8.	1.3	7
80	Clay minerals for tissue regeneration, repair, and engineering. , 2016, , 385-402.		14
81	Palmitoyl Glycol Chitosan Micelles for Corneal Delivery of Cyclosporine. Journal of Biomedical Nanotechnology, 2016, 12, 231-240.	1.1	25
82	Particulate systems based on pectin/chitosan association for the delivery of manuka honey components and platelet lysate in chronic skin ulcers. International Journal of Pharmaceutics, 2016, 509, 59-70.	5.2	31
83	Platelet lysate and chondroitin sulfate loaded contact lenses to heal corneal lesions. International Journal of Pharmaceutics, 2016, 509, 188-196.	5.2	22
84	Sponge-Like Dressings Based on the Association of Chitosan and Sericin for the Treatment of Chronic Skin Ulcers. II. Loading of the Hemoderivative Platelet Lysate. Journal of Pharmaceutical Sciences, 2016, 105, 1188-1195.	3.3	27
85	Sponge-Like Dressings Based on the Association of Chitosan and Sericin for the Treatment of Chronic Skin Ulcers. I. Design of Experiments–Assisted Development. Journal of Pharmaceutical Sciences, 2016, 105, 1180-1187.	3.3	39
86	All natural cellulose acetate—Lemongrass essential oil antimicrobial nanocapsules. International Journal of Pharmaceutics, 2016, 510, 508-515.	5.2	42
87	<i>In vitro</i> testing of thiolated poly(aspartic acid) from ophthalmic formulation aspects. Drug Development and Industrial Pharmacy, 2016, 42, 1241-1246.	2.0	9
88	Engineered microparticles based on drug–polymer coprecipitates for ocular-controlled delivery of Ciprofloxacin: influence of technological parameters. Drug Development and Industrial Pharmacy, 2016, 42, 554-562.	2.0	12
89	Controlled delivery systems for tissue repair and regeneration. Journal of Drug Delivery Science and Technology, 2016, 32, 206-228.	3.0	23
90	Skin Localization of Lipid Nanoparticles (SLN/NLC): Focusing the Influence of Formulation Parameters. Current Drug Delivery, 2016, 13, 1100-1110.	1.6	9

#	Article	IF	CITATIONS
91	Mucoadhesive Polymers as Enabling Excipients for Oral Mucosal Drug Delivery. Advances in Delivery Science and Technology, 2015, , 53-88.	0.4	4
92	InÂvitro evaluation of a protective nasal spray: Measurements of mucoadhesion and reconstructive barrier properties towards a tracheobronchial reconstruct. Journal of Drug Delivery Science and Technology, 2015, 30, 368-374.	3.0	6
93	Mucoadhesive and thermogelling systems for vaginal drug delivery. Advanced Drug Delivery Reviews, 2015, 92, 39-52.	13.7	197
94	Medical Devices for Oral Mucosal Applications. Advances in Delivery Science and Technology, 2015, , 225-245.	0.4	1
95	Comparative study of nanosized cross-linked sodium-, linear sodium- and zinc-hyaluronate as potential ocular mucoadhesive drug delivery systems. International Journal of Pharmaceutics, 2015, 494, 321-328.	5.2	25
96	<i>In vitro</i> lipolysis tests on lipid nanoparticles: comparison between lipase/co-lipase and pancreatic extract. Drug Development and Industrial Pharmacy, 2015, 41, 1582-1588.	2.0	24
97	Thiolated poly(aspartic acid) as potential in situ gelling, ocular mucoadhesive drug delivery system. European Journal of Pharmaceutical Sciences, 2015, 67, 1-11.	4.0	66
98	Platelet lysate embedded scaffolds for skin regeneration. Expert Opinion on Drug Delivery, 2015, 12, 525-545.	5.0	39
99	Advances in oral controlled drug delivery: the role of drug–polymer and interpolymer non-covalent interactions. Expert Opinion on Drug Delivery, 2015, 12, 441-453.	5.0	82
100	Opportunities Offered by Chitosan-Based Nanotechnology in Mucosal/ Skin Drug Delivery. Current Topics in Medicinal Chemistry, 2015, 15, 401-412.	2.1	13
101	Drug Release Kinetics and Front Movement in Matrix Tablets Containing Diltiazem or Metoprolol/ <i>λ</i> -Carrageenan Complexes. BioMed Research International, 2014, 2014, 1-8.	1.9	9
102	Intercalation of tetracycline into layered clay mineral material for drug delivery purposes. Materials Technology, 2014, 29, B96-B99.	3.0	17
103	Chitosan gel containing polymeric nanocapsules: a new formulation for vaginal drug delivery. International Journal of Nanomedicine, 2014, 9, 3151.	6.7	52
104	Solid state characterisation of silver sulfadiazine loaded on montmorillonite/chitosan nanocomposite for wound healing. Colloids and Surfaces B: Biointerfaces, 2014, 113, 152-157.	5.0	86
105	Intestinal permeability of oxytetracycline from chitosan-montmorillonite nanocomposites. Colloids and Surfaces B: Biointerfaces, 2014, 117, 441-448.	5.0	37
106	Ionic polymeric micelles based on chitosan and fatty acids and intended for wound healing. Comparison of linoleic and oleic acid. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 87, 101-106.	4.3	79
107	Calcium alginate particles for the combined delivery of platelet lysate and vancomycin hydrochloride in chronic skin ulcers. International Journal of Pharmaceutics, 2014, 461, 505-513.	5.2	37
108	Montmorillonite–chitosan–silver sulfadiazine nanocomposites for topical treatment of chronic skin lesions: In vitro biocompatibility, antibacterial efficacy and gap closure cell motility properties. Carbohydrate Polymers, 2014, 102, 970-977.	10.2	96

#	Article	IF	CITATIONS
109	A novel bioadhesive semisolid formulation containing chitosan and tetracycline/layered clay complexes for local delivery into periodontal pocket. Materials Technology, 2014, 29, B108-B113.	3.0	3
110	Development of chitosan oleate ionic micelles loaded with silver sulfadiazine to be associated with platelet lysate for application in wound healing. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 88, 643-650.	4.3	78
111	Comparison of poloxamer- and chitosan-based thermally sensitive gels for the treatment of vaginal mucositis. Drug Development and Industrial Pharmacy, 2014, 40, 352-360.	2.0	49
112	The Role of Particle Size in Drug Release and Absorption. Particle Technology Series, 2014, , 323-341.	0.5	13
113	Networking and rheology of concentrated clay suspensions "matured―in mineral medicinal water. International Journal of Pharmaceutics, 2013, 453, 473-479.	5.2	18
114	Wound dressings based on silver sulfadiazine solid lipid nanoparticles for tissue repairing. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 84, 84-90.	4.3	88
115	New Therapeutic Platforms for the Treatment of Epithelial and Cutaneous Lesions. Current Drug Delivery, 2013, 10, 18-31.	1.6	30
116	Development of sponge-like dressings for mucosal/transmucosal drug delivery into vaginal cavity. Pharmaceutical Development and Technology, 2012, 17, 219-226.	2.4	15
117	Preparation and characterization of polysaccharide-based nanoparticles with anticoagulant activity. International Journal of Nanomedicine, 2012, 7, 2975.	6.7	36
118	Thermosensitive eyedrops containing platelet lysate for the treatment of corneal ulcers. International Journal of Pharmaceutics, 2012, 426, 1-6.	5.2	51
119	Platelet lysate formulations based on mucoadhesive polymers for the treatment of corneal lesions. Journal of Pharmacy and Pharmacology, 2011, 63, 189-198.	2.4	60
120	An In Situ Gelling Buccal Spray Containing Platelet Lysate for the Treatment of Oral Mucositis. Current Drug Discovery Technologies, 2011, 8, 277-285.	1.2	35
121	Platelet Lysate Mucohadesive Formulation to Treat Oral Mucositis in Graft Versus Host Disease Patients: A New Therapeutic Approach. AAPS PharmSciTech, 2011, 12, 893-9.	3.3	41
122	Effect of chitosan coating in overcoming the phagocytosis of insulin loaded solid lipid nanoparticles by mononuclear phagocyte system. Carbohydrate Polymers, 2011, 84, 919-925.	10.2	95
123	Insulin-Loaded Nanoparticles Based on N-Trimethyl Chitosan: In Vitro (Caco-2 Model) and Ex Vivo (Excised Rat Jejunum, Duodenum, and lleum) Evaluation of Penetration Enhancement Properties. AAPS PharmSciTech, 2010, 11, 362-371.	3.3	71
124	Mucoadhesive and penetration enhancement properties of three grades of hyaluronic acid using porcine buccal and vaginal tissue, Caco-2 cell lines, and rat jejunum. Journal of Pharmacy and Pharmacology, 2010, 56, 1083-1090.	2.4	86
125	Chitosan-associated SLN: <i>in vitro</i> and <i>ex vivo</i> characterization of cyclosporine A loaded ophthalmic systems. Journal of Microencapsulation, 2010, 27, 735-746.	2.8	70
126	Frontal polymerization as a new method for developing drug controlled release systems (DCRS) based on polyacrylamide. European Polymer Journal, 2009, 45, 690-699.	5.4	61

#	Article	IF	CITATIONS
127	Chitosan and its salts for mucosal and transmucosal delivery. Expert Opinion on Drug Delivery, 2009, 6, 923-939.	5.0	76
128	Cyclosporine A loaded SLNs: Evaluation of cellular uptake and corneal cytotoxicity. International Journal of Pharmaceutics, 2008, 364, 76-86.	5.2	145
129	Penetration and Distribution of Thiocolchicoside through Human Skin: Comparison Between a Commercial Foam (Miotens®) and a Drug Solution. AAPS PharmSciTech, 2008, 9, 1185-1190.	3.3	17
130	Chitosan citrate as multifunctional polymer for vaginal delivery. European Journal of Pharmaceutical Sciences, 2008, 33, 166-176.	4.0	53
131	Chitosan Ascorbate: A Chitosan Salt with Improved Penetration Enhancement Properties. Pharmaceutical Development and Technology, 2008, 13, 513-521.	2.4	30
132	Polyelectrolyte–Drug Complexes of Lambda Carrageenan and Basic Drugs: Relevance of Particle Size and Moisture Content on Compaction and Drug Release Behavior. Drug Development and Industrial Pharmacy, 2008, 34, 1188-1195.	2.0	13
133	Vancomycin–Triacetyl Cyclodextrin Interaction Products for Prolonged Drug Delivery. Pharmaceutical Development and Technology, 2008, 13, 65-73.	2.4	13
134	Nanoparticles based on N-trimethylchitosan: Evaluation of absorption properties using in vitro (Caco-2 cells) and ex vivo (excised rat jejunum) models. European Journal of Pharmaceutics and Biopharmaceutics, 2007, 65, 68-77.	4.3	124
135	Wound Dressings Based on Chitosans and Hyaluronic Acid for the Release of Chlorhexidine Diacetate in Skin Ulcer Therapy. Pharmaceutical Development and Technology, 2007, 12, 415-422.	2.4	74
136	Solid-state interactions and drug release of teicoplanin in binary combinations with peracetylated α-, β-, and γ-cyclodextrins. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2007, 57, 329-332.	1.6	4
137	Differentiating Factors between Oral Fast-Dissolving Technologies. American Journal of Drug Delivery, 2006, 4, 249-262.	0.6	25
138	Ophthalmic delivery systems based on drug–polymer–polymer ionic ternary interaction: In vitro and in vivo characterization. European Journal of Pharmaceutics and Biopharmaceutics, 2006, 62, 59-69.	4.3	39
139	Chitosan gels for the vaginal delivery of lactic acid: Relevance of formulation parameters to mucoadhesion and release mechanisms. AAPS PharmSciTech, 2006, 7, E141-E147.	3.3	56
140	Buccal penetration enhancement properties of N-trimethyl chitosan: Influence of quaternization degree on absorption of a high molecular weight molecule. International Journal of Pharmaceutics, 2005, 297, 146-155.	5.2	127
141	Buccal drug delivery: A challenge already won?. Drug Discovery Today: Technologies, 2005, 2, 59-65.	4.0	121
142	Assessment of chitosan derivatives as buccal and vaginal penetration enhancers. European Journal of Pharmaceutical Sciences, 2004, 21, 351-359.	4.0	151
143	Carrageenan–gelatin mucoadhesive systems for ion-exchange based ophthalmic delivery: in vitro and preliminary in vivo studies. European Journal of Pharmaceutics and Biopharmaceutics, 2004, 57, 465-472.	4.3	74
144	Buccal Delivery of Acyclovir from Films Based on Chitosan and Polyacrylic Acid. Pharmaceutical Development and Technology, 2003, 8, 199-208.	2.4	79

MARIA CRISTINA BONFERONI

#	Article	IF	CITATIONS
145	Mucoadhesive vaginal tablets as veterinary delivery system for the controlled release of an antimicrobial drug, acriflavine. AAPS PharmSciTech, 2002, 3, 32-38.	3.3	44
146	Mucoadhesive vaginal tablets as veterinary delivery system for the controlled release of an antimicrobial drug, acriflavine. AAPS PharmSciTech, 2002, 3, 32-38.	3.3	25
147	Influence of complex solubility on formulations based on lambda carrageenan and basic drugs. AAPS PharmSciTech, 2002, 3, 83-89.	3.3	19
148	Influence of complex solubility on formulations based on lambda carrageenan and basic drugs. AAPS PharmSciTech, 2002, 3, 83-89.	3.3	18
149	Characterization of chitosan hydrochloride–mucin rheological interaction: influence of polymer concentration and polymer:mucin weight ratio. European Journal of Pharmaceutical Sciences, 2001, 12, 479-485.	4.0	104
150	Characterization of chitosan hydrochloride–mucin interaction by means of viscosimetric and turbidimetric measurements. European Journal of Pharmaceutical Sciences, 2000, 10, 251-257.	4.0	132
151	Factorial analysis of the influence of dissolution medium on drug release from carrageenan-diltiazem complexes. AAPS PharmSciTech, 2000, 1, 72-79.	3.3	27
152	Model-based interpretation of creep profiles for the assessment of polymer-mucin interaction. Pharmaceutical Research, 1999, 16, 1456-1463.	3.5	11
153	Characterisation of particle properties and compaction behaviour of hydroxypropyl methylcellulose with different degrees of methoxy/hydroxypropyl substitution. European Journal of Pharmaceutical Sciences, 1999, 9, 171-184.	4.0	53
154	A Rheological Approach to Explain the Mucoadhesive Behavior of Polymer Hydrogels. Drugs and the Pharmaceutical Sciences, 1999, , 25-65.	0.1	15
155	Dissolution Enhancement of an Insoluble Drug by Physical Mixture with a Superdisintegrant: Optimization with a Simplex Lattice Design. Pharmaceutical Development and Technology, 1996, 1, 159-164.	2.4	15
156	Inclusion of pterostilbene in natural cyclodextrins: complex preparation and solid-state		1

characterization., 0, , .