
Axel S Koopman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2966775/publications.pdf Version: 2024-02-01

AVEL S KOOPMAN

#	Article	IF	CITATIONS
1	Biomechanical Evaluation of the Effect of Three Trunk Support Exoskeletons on Spine Loading During Lifting. Biosystems and Biorobotics, 2022, , 177-181.	0.3	0
2	Effects of a passive back exoskeleton on the mechanical loading of the low-back during symmetric lifting. Journal of Biomechanics, 2020, 102, 109486.	2.1	60
3	SPEXOR passive spinal exoskeleton decreases metabolic cost during symmetric repetitive lifting. European Journal of Applied Physiology, 2020, 120, 401-412.	2.5	72
4	Selecting the appropriate input variables in a regression approach to estimate actively generated muscle moments around L5/S1 for exoskeleton control. Journal of Biomechanics, 2020, 102, 109650.	2.1	6
5	Biomechanical evaluation of a new passive back support exoskeleton. Journal of Biomechanics, 2020, 105, 109795.	2.1	71
6	The effect of control strategies for an active back-support exoskeleton on spine loading and kinematics during lifting. Journal of Biomechanics, 2019, 91, 14-22.	2.1	65
7	Effects of a passive exoskeleton on the mechanical loading of the low back in static holding tasks. Journal of Biomechanics, 2019, 83, 97-103.	2.1	135
8	Trunk Range of Motion in the Sagittal Plane with and Without a Flexible Back Support Exoskeleton. Biosystems and Biorobotics, 2019, , 239-243.	0.3	1
9	Continuous ambulatory hand force monitoring during manual materials handling using instrumented force shoes and an inertial motion capture suit. Journal of Biomechanics, 2018, 70, 235-241.	2.1	25
10	Estimating the L5S1 flexion/extension moment in symmetrical lifting using a simplified ambulatory measurement system. Journal of Biomechanics, 2018, 70, 242-248.	2.1	22
11	Rationale, Implementation and Evaluation of Assistive Strategies for an Active Back-Support Exoskeleton. Frontiers in Robotics and Al, 2018, 5, 53.	3.2	106
12	Passive Back Support Exoskeleton Improves Range of Motion Using Flexible Beams. Frontiers in Robotics and Al, 2018, 5, 72.	3.2	120