
Ke-Wen Tang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2966752/publications.pdf Version: 2024-02-01

KE-MEN TANC

#	Article	IF	CITATIONS
1	Electrochemical Synthesis of Benzo[<i>d</i>]imidazole via Intramolecular C(sp ³)–H Amination. Journal of Organic Chemistry, 2023, 88, 1928-1935.	1.7	12
2	Synthesis of reusable cyclodextrin polymers for removal of naphthol and naphthylamine from water. Environmental Science and Pollution Research, 2022, 29, 22106-22121.	2.7	5
3	Copper-catalyzed [4+1] cycloannulation of 2-aminochalcones with ethyl diazophenylacetates <i>via</i> ester rearrangement. New Journal of Chemistry, 2022, 46, 1018-1024.	1.4	2
4	Transition-metal-free alkylation strategy: facile access to alkylated oxindoles <i>via</i> alkyl transfer. Organic and Biomolecular Chemistry, 2022, 20, 1958-1968.	1.5	9
5	Separation of active components tyrosol and salidroside from Rhodiola rosea crude extract by two-step multistage fractionation extraction. Chemical Engineering and Processing: Process Intensification, 2022, 172, 108800.	1.8	3
6	Efficient adsorption of Au(III) from acidic solution by a novel N, S-containing metal–organic framework. Separation and Purification Technology, 2022, 288, 120646.	3.9	22
7	Metalâ€free, Phosphoric Acidâ€catalyzed Regioselective 1,6â€Hydroarylation of <i>para</i> â€Quinone Methides with Indoles in Water. Chemistry - an Asian Journal, 2022, 17, .	1.7	7
8	Visible-Light-Induced Dual Acylation of Alkenes for the Construction of 3-Substituted Chroman-4-ones. Journal of Organic Chemistry, 2022, 87, 4263-4272.	1.7	11
9	Quaternary solvent system for highly efficient separation and purification of glabridin by fractional extraction. Chemical Engineering Science, 2022, 253, 117587.	1.9	3
10	Resolution of (<i>R,S</i>)â€1â€(4â€methoxyphenyl)ethanol by lipaseâ€catalyzed stereoselective transesterification and the process optimization. Chirality, 2022, 34, 438-445.	1.3	2
11	Alkylation/Ipso-cyclization of Active Alkynes Leading to 3-Alkylated Aza- and Oxa-spiro[4,5]-trienones. Journal of Organic Chemistry, 2022, 87, 5643-5659.	1.7	13
12	Silver-catalyzed regioselective 1,6-hydroarylation of <i>para</i> -quinone methides with anilines and phenols. Organic Chemistry Frontiers, 2022, 9, 3807-3817.	2.3	7
13	Equilibrium on reactive extraction of glabridin in a quaternary solvent system containing SBE-Î ² -CD. Chemical Engineering Research and Design, 2022, 184, 524-532.	2.7	2
14	Cr-Based MOF for Efficient Adsorption of Au at Low Concentrations. Langmuir, 2022, 38, 8954-8963.	1.6	12
15	Acidâ€Catalyzed Regioselective Synthesis of <i>α</i> â€Diarylmethyl Substituted Phenols and <i>para</i> â€Quinone Methides in Water. Asian Journal of Organic Chemistry, 2022, 11, .	1.3	4
16	Recent Progress in the Selective Functionalization of P(O)–OH Bonds. Topics in Current Chemistry, 2021, 379, 5.	3.0	1
17	Lipase from pseudomonas cepacia immobilized into ZIF-8 as bio-catalyst for enantioselective hydrolysis and transesterification. Process Biochemistry, 2021, 102, 132-140.	1.8	20
18	Highly efficient adsorption of Ag(I) from aqueous solution by Znâ€NDC metal–organic framework. Applied Organometallic Chemistry, 2021, 35, e6267.	1.7	4

#	Article	IF	CITATIONS
19	Visibleâ€Lightâ€Mediated Nitrogenâ€Centered Radical Strategy: Preparation of 3â€Acylated Spiro[4,5]trienones. Advanced Synthesis and Catalysis, 2021, 363, 4440-4446.	2.1	26
20	Enhancement of the catalytic efficiency of Candida antarctica lipase A in enantioselective hydrolysis through immobilization onto a hydrophobic MOF support. Biochemical Engineering Journal, 2021, 173, 108066.	1.8	11
21	Visible-Light-Induced Transition-Metal-Free Nitrogen-Centered Radical Strategy for the Synthesis of 2-Acylated 9 <i>H</i> -Pyrrolo[1,2- <i>a</i>]indoles. Journal of Organic Chemistry, 2021, 86, 13720-13733.	1.7	13
22	Highly selective enrichment of Au using enaminone covalent organic polymers (COP). RSC Advances, 2021, 11, 29807-29815.	1.7	10
23	Visible-light-mediated cascade cyanoalkylsulfonylation/cyclization of alkynoates leading to coumarins <i>via</i> SO ₂ insertion. Organic and Biomolecular Chemistry, 2021, 19, 3181-3190.	1.5	29
24	Visible-Light-Catalyzed Tandem Cyanoalkylsulfonylation/ Cyclization of Alkynes. Chinese Journal of Organic Chemistry, 2021, 41, 2290.	0.6	5
25	Metal-Free, Acid/Phosphine-Induced Regioselective Thiolation of <i>p</i> -Quinone Methides with Sodium Aryl/Alkyl Sulfinates. Journal of Organic Chemistry, 2021, 86, 1516-1527.	1.7	26
26	The visible-light-induced acylation/cyclization of alkynoates with acyl oximes for the construction of 3-acylcoumarins. Organic and Biomolecular Chemistry, 2021, 19, 9012-9020.	1.5	11
27	Cu-Catalyzed Oxidative Dual Arylation of Active Alkenes: Preparation of Cyanoarylated Oxindoles through Denitrogenation of 3-Aminoindazoles. Journal of Organic Chemistry, 2021, 86, 2866-2875.	1.7	13
28	Silver-Catalyzed Regioselective Phosphorylation of <i>para</i> -Quinone Methides with P(III)-Nucleophiles. Journal of Organic Chemistry, 2021, 86, 14983-15003.	1.7	16
29	Selective adsorption of Au(III) with ultra-fast kinetics by a new metal-organic polymer. Journal of Molecular Liquids, 2020, 319, 114125.	2.3	36
30	Fast and effective recovery of Au(III) from aqueous solution by a N-containing polymer. Chemosphere, 2020, 260, 127615.	4.2	40
31	Copper-promoted cyanoalkylation/ring-expansion of vinylcyclopropanes with α-C–H bonds in alkylnitriles toward 3,4-dihydronaphthalenes. Organic and Biomolecular Chemistry, 2020, 18, 8677-8685.	1.5	9
32	PEG-modified lipase immobilized onto NH2-MIL-53 MOF for efficient resolution of 4-fluoromandelic acid enantiomers. International Journal of Biological Macromolecules, 2020, 165, 1793-1802.	3.6	17
33	Silver-promoted oxidative sulfonylation and ring-expansion of vinylcyclopropanes with sodium sulfinates leading to dihydronaphthalene derivatives. Organic and Biomolecular Chemistry, 2020, 18, 7345-7354.	1.5	6
34	Ironâ€Mediated Cyanoalkylsulfonylation/Arylation of Active Alkenes with Cycloketone Oxime Derivatives via Sulfur Dioxide Insertion. Advanced Synthesis and Catalysis, 2020, 362, 3004-3010.	2.1	40
35	Immobilization of lipase onto metal–organic frameworks for enantioselective hydrolysis and transesterification. AICHE Journal, 2020, 66, e16292.	1.8	16
36	Metalâ€Free, <i>N</i> â€lodosuccinimideâ€lnduced Regioselective Iodophosphoryloxylation of Alkenes with P(O)â^'OH Bonds. Chemistry - A European Journal, 2020, 26, 9556-9560.	1.7	7

#	Article	IF	CITATIONS
37	In situ grown Cu-Based metal-organic framework on copper foam as high-performance electrocatalysts for oxygen evolution reaction. International Journal of Hydrogen Energy, 2020, 45, 21540-21546.	3.8	24
38	Novel Chiral Drug Recovery and Enantioseparation Method: Hollow Fiber Membrane Extraction and In Situ Coupling of Back-Extraction with Crystallization. Industrial & Engineering Chemistry Research, 2020, 59, 13735-13743.	1.8	9
39	Preparative separation of chlorogenic acid from <scp><i>Eucommia ulmoides</i></scp> extract <i>via</i> fractional extraction. Journal of Chemical Technology and Biotechnology, 2020, 95, 2139-2148.	1.6	5
40	Visible Light-Catalyzed Cascade Radical Cyclization of <i>N</i> -Propargylindoles with Acyl Chlorides for the Synthesis of 2-Acyl-9 <i>H</i> -pyrrolo[1,2- <i>a</i>]indoles. Journal of Organic Chemistry, 2020, 85, 2385-2394.	1.7	33
41	Visible-light photoredox-catalyzed dual C–C bond cleavage: synthesis of 2-cyanoalkylsulfonylated 3,4-dihydronaphthalenes through the insertion of sulfur dioxide. Chemical Communications, 2020, 56, 3011-3014.	2.2	99
42	Fast recovery of Au (III) and Ag(I) via amineâ€modified zeolitic imidazolate frameworkâ€8. Applied Organometallic Chemistry, 2020, 34, e5541.	1.7	20
43	Lipaseâ€catalyzed hydrolysis of (<i>+</i> , <i>â€</i>)â€2â€(4â€methylphenyl) propionic methyl ester enhanced by hydroxypropylâ€ <i>î²</i> â€cyclodextrin. Journal of Chemical Technology and Biotechnology, 2019, 94, 147-158.	1.6	10
44	Simulation and optimization of Novozym 40086 kinetic resolution of α yclopentylphenylacetic acid enantiomers. Journal of Chemical Technology and Biotechnology, 2019, 94, 3595-3605.	1.6	2
45	Synthesis of 2-Acyl-3,4-dihydronaphthalenes by Silver-Promoted Oxidative C–C σ-Bond Acylation/Arylation of Alkylidenecyclopropanes with α-Ketoacids. Journal of Organic Chemistry, 2019, 84, 9984-9994.	1.7	15
46	Visible-light-mediated difunctionalization of vinylcyclopropanes for the synthesis of 1-sulfonylmethyl-3,4-dihydronaphthalenes. Organic and Biomolecular Chemistry, 2019, 17, 7918-7926.	1.5	24
47	Highly efficient and selective recovery of Au(III) by a new metal-organic polymer. Journal of Hazardous Materials, 2019, 380, 120844.	6.5	45
48	Symmetric and asymmetric separations of bisoprolol enantiomers: Optimization and application. Process Biochemistry, 2019, 86, 159-168.	1.8	0
49	Copperâ€Catalyzed Diphenylation of P(O)â€OH Bonds with Cyclic Diaryliodonium Salts. Chemistry - an Asian Journal, 2019, 14, 4365-4374.	1.7	14
50	Kinetic model of resolution of 4-methoxymandelic acid enantiomers by lipase-catalyzed transesterification reaction. Applied Catalysis A: General, 2019, 587, 117274.	2.2	4
51	Highly Efficient Adsorption of Au(III) from Water by a Novel Metal–Organic Framework Constructed with Sulfur-Containing Ligands and Zn(II). Industrial & Engineering Chemistry Research, 2019, 58, 17972-17979.	1.8	42
52	Visible-light promoted one-pot synthesis of sulfonated spiro[4,5]trienones from propiolamides, anilines and sulfur dioxide under transition metal-free conditions. Chemical Communications, 2019, 55, 12212-12215.	2.2	56
53	Enzymatic enantioselective hydrolysis of 2-phenylpropionic acid ester: Experiment and simulation. Chemical Engineering Research and Design, 2019, 150, 130-139.	2.7	3
54	Silver-mediated oxidative C–C bond sulfonylation/arylation of methylenecyclopropanes with sodium sulfinates: facile access to 3-sulfonyl-1,2-dihydronaphthalenes. Organic and Biomolecular Chemistry, 2019, 17, 1365-1369.	1.5	35

#	Article	IF	CITATIONS
55	Baseâ€Catalyzed Stereoselective 1,6â€Conjugated Addition/Aromatization of P(O)–H Compounds with <i>para</i> â€Quinone Methides. European Journal of Organic Chemistry, 2019, 2019, 3273-3282.	1.2	15
56	Kinetic study on enantioselective resolution of (R,S)â€2â€phenylpropionic acid through Novozyme 435–catalyzed esterification. International Journal of Chemical Kinetics, 2019, 51, 520-527.	1.0	3
57	Lipase-catalyzed hydrolysis of 2-(4-hydroxyphenyl)propionic acid ethyl ester to (R)-(â^²)-2-(4-hydroxyphenyl)propanoic acid. Chemical Papers, 2019, 73, 2461-2468.	1.0	2
58	Oxone-Mediated Radical C–C Bond Acetmethylation/Arylation of Methylenecyclopropanes and Vinylcyclopropanes with α-Alkyl Ketones: Facile Access to Oxoalkyl-Substituted 3,4-Dihydronaphthalenes. Journal of Organic Chemistry, 2019, 84, 5413-5424.	1.7	26
59	Enhancement mechanism of an improved liquid membrane using selective permeation retardant for heavy metal ions separation. Chemical Engineering Science, 2019, 201, 1-14.	1.9	21
60	Selective recovery of Ag(I) from industrial wastewater using zeolite imidazolate framework-8: performance and mechanisms. Environmental Science and Pollution Research, 2019, 26, 14214-14225.	2.7	11
61	Resolution of (R , S)â€ibuprofen catalyzed by immobilized Novozym40086 in organic phase. Chirality, 2019, 31, 445-456.	1.3	7
62	Experiment and simulation on kinetic resolution of (R,S)â€2â€chloromandelic acid by enzymatic transesterification. Biotechnology Progress, 2019, 35, e2815.	1.3	3
63	Lipase-Catalyzed Production of (<i>S</i>)-Carprofen Enhanced by Hydroxyethyl-β-cyclodextrins: Experiment and Optimization. Organic Process Research and Development, 2019, 23, 891-899.	1.3	5
64	Visible-Light-Catalyzed C–C Bond Difunctionalization of Methylenecyclopropanes with Sulfonyl Chlorides for the Synthesis of 3-Sulfonyl-1,2-dihydronaphthalenes. Journal of Organic Chemistry, 2019, 84, 2829-2839.	1.7	48
65	Visible-light-induced cascade sulfonylation/cyclization of <i>N</i> -propargylindoles with aryldiazonium tetrafluoroborates <i>via</i> the insertion of sulfur dioxide. Organic and Biomolecular Chemistry, 2019, 17, 10020-10029.	1.5	39
66	Selective Extraction of ECG from Tea Polyphenols by One Step in Centrifugal Contactor Separators: Modeling and Application. Industrial & Engineering Chemistry Research, 2019, 58, 2027-2035.	1.8	12
67	Transition Metalâ€Free Difunctionalization of Câ^'C Bond with Sodium Sulfinates and Water Leading to (<i>E</i>)â€lâ€Phenylâ€4â€sulfonylbutâ€lâ€enes. Advanced Synthesis and Catalysis, 2019, 361, 2315-2320.	2.1	9
68	Continuous and selective separation of EGCG from tea polyphenols by fractional extraction: Experiment and simulation. AICHE Journal, 2019, 65, 259-269.	1.8	9
69	Experiments and simulation on extraction of esmolol enantiomers from single stage to multistage. Separation and Purification Technology, 2018, 203, 289-300.	3.9	5
70	Visible-light-mediated cascade difunctionalization/cyclization of alkynoates with acyl chlorides for synthesis of 3-acylcoumarins. Tetrahedron Letters, 2018, 59, 2038-2041.	0.7	24
71	Visible-Light-Mediated <i>Ipso</i> -Carboacylation of Alkynes: Synthesis of 3-Acylspiro[4,5]trienones from <i>N</i> -(<i>p</i> -Methoxyaryl)propiolamides and Acyl Chlorides. Journal of Organic Chemistry, 2018, 83, 2210-2218.	1.7	66
72	Bu ₄ NI-Catalyzed Dehydrogenative Coupling of Diaryl Phosphinic Acids with C(sp ³)–H Bonds of Arenes. Journal of Organic Chemistry, 2018, 83, 993-999.	1.7	22

#	Article	IF	CITATIONS
73	Modeling and optimization for asymmetric separation of atenolol enantiomers and application. Chemical Engineering and Processing: Process Intensification, 2018, 129, 43-50.	1.8	1
74	Oxidative C–C Bond Functionalization of Methylenecyclopropanes with Aldehydes for the Formation of 2-Acyl-3,4-dihydronaphthalenes. Journal of Organic Chemistry, 2018, 83, 4657-4664.	1.7	36
75	Kinetic study on extractive resolution of tropic acid by hydroxyethyl-β-cyclodextrin. Chemical Papers, 2018, 72, 585-591.	1.0	1
76	Multistage enantioselective reactive extraction of terbutaline enantiomers by hydrophobic phase transfer: Experiment and modeling. Separation and Purification Technology, 2018, 191, 208-215.	3.9	11
77	Kinetic study on reactive extraction of clorprenaline enantiomers with a combined chiral selector. Separation Science and Technology, 2018, 53, 110-116.	1.3	2
78	Modeling multiple chemical equilibrium in chiral extraction of metoprolol enantiomers from single-stage extraction to fractional extraction. Chemical Engineering Science, 2018, 177, 74-88.	1.9	12
79	Continuous Separation of Propranolol by Fractional Extraction: Symmetric Separation and Asymmetric Separation. Organic Process Research and Development, 2018, 22, 1782-1792.	1.3	4
80	Efficient adsorption toward precious metal from aqueous solution by zeolitic imidazolate framework-8. Adsorption, 2018, 24, 733-744.	1.4	31
81	Lipaseâ€catalyzed hydrolysis of (R , S)â€2,3â€diphenylpropionic methyl ester enhanced by hydroxypropylâ€l²â€cyclodextrin. Biotechnology Progress, 2018, 34, 1355-1362.	1.3	1
82	Simultaneously enhanced ELM selectivity and stability by difunctional additives for batch and continuous separation of Cd(II)/Cu(II). Chemical Engineering Research and Design, 2018, 140, 261-272.	2.7	12
83	BrÃ,nstedâ€Acid atalyzed <i>para</i> elective Diazotization of Anilines with Aryl Diazonium Tetrafluoroborates. ChemistrySelect, 2018, 3, 5147-5152.	0.7	6
84	Enzymatic Enantioselective Hydrolysis of 2-(3-Chlorophenyl) Propionic Acid Ester Enhanced by PEG: Experiment and Optimization. Industrial & Engineering Chemistry Research, 2018, 57, 11246-11256.	1.8	5
85	Preparative enantioseparation of 2-(4-hydroxyphenyl)propionic acid by high speed counter-current chromatography with hydroxyethyl-1²-cyclodextrin as chiral selector. Separation Science and Technology, 2018, 53, 2981-2989.	1.3	9
86	Continuous chiral separation of 2-phenylbutyric acid by liquid-liquid extraction in centrifugal contactor separators. Separation and Purification Technology, 2017, 179, 53-60.	3.9	17
87	Optimizing two-phase system by experiment and simulation for high-speed counter-current chromatographic separation of 2-phenylbutyric acid enantiomer. Separation Science and Technology, 2017, 52, 1275-1282.	1.3	2
88	Efficient and Controllable Esterification of P(O)â€OH Compounds Using Uroniumâ€Based Salts. ChemistrySelect, 2017, 2, 3376-3380.	0.7	12
89	CDI-promoted direct esterification of P(O)-OH compounds with phenols. Tetrahedron Letters, 2017, 58, 2482-2486.	0.7	23
90	Study on the Extraction Kinetics of Ketoconazole with Hydroxypropyl-β-Cyclodextrin as a Selector. International Journal of Chemical Kinetics, 2017, 49, 457-463.	1.0	1

#	Article	IF	CITATIONS
91	Metal-Free Oxidative C–C Bond Functionalization of Methylenecyclopropanes with Ethers Leading to 2-Substituted 3,4-Dihydronaphthalenes. Journal of Organic Chemistry, 2017, 82, 7394-7401.	1.7	38
92	Study on kinetics of reactive extraction of propranolol enantiomers by multiple linear regression method. Asia-Pacific Journal of Chemical Engineering, 2017, 12, 551-560.	0.8	4
93	Enantioseparation of pheniramine enantiomers by highâ€speed countercurrent chromatography using β yclodextrin derivatives as a chiral selector. Journal of Separation Science, 2017, 40, 3801-3807.	1.3	23
94	Modeling Multiple Chemical Equilibrium in Single-Stage Extraction of Atenolol Enantiomers with Tartrate and Boric Acid as Chiral Selector. Journal of Chemical & Engineering Data, 2017, 62, 4344-4355.	1.0	11
95	Chiral separation of brompheniramine enantiomers by recycling highâ€speed countercurrent chromatography using carboxymethylâ€Î²â€cyclodextrin as a chiral selector. Journal of Separation Science, 2016, 39, 2300-2306.	1.3	21
96	Study on enantioseparation of α-cyclopentyl-mandelic acid enantiomers using continuous liquid-liquid extraction in centrifugal contactor separators: Experiments and modeling. Chemical Engineering and Processing: Process Intensification, 2016, 107, 168-176.	1.8	13
97	Equilibrium study on enantioselective distribution of amlodipine besilate enantiomers in a biphasic recognition chiral extraction system. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2016, 85, 127-135.	0.9	6
98	Kinetics study on the reactive extraction of homophenylalanine enantiomers with BINAP-copper complex. Separation Science and Technology, 2016, 51, 1994-2000.	1.3	0
99	Modelling and optimization of a two phase system for the separation of equol enantiomers by recycling high-speed counter-current chromatography. Tetrahedron: Asymmetry, 2015, 26, 821-828.	1.8	8
100	Process optimization of continuous liquid–liquid extraction in centrifugal contactor separators for separation of oxybutynin enantiomers. Separation and Purification Technology, 2015, 150, 170-178.	3.9	16
101	Modeling and Optimizing the Biphasic Enantioselective Partitioning of 2-Fluoro-phenylalanine Enantiomers with BINAP–Metal Complexes as Chiral Selector. Journal of Solution Chemistry, 2015, 44, 112-130.	0.6	9
102	Experimental and Model Study on Multistage Enantioselective Liquid–Liquid Extraction of Ketoconazole Enantiomers in Centrifugal Contactor Separators. Industrial & Engineering Chemistry Research, 2015, 54, 8762-8771.	1.8	16
103	Fractional Reactive Extraction for Symmetrical Separation of 4â€Nitroâ€D,Lâ€Phenylalanine in Centrifugal Contactor Separators: Experiments and Modeling. Chirality, 2015, 27, 75-81.	1.3	8
104	Equilibrium of chiral extraction of 4-nitro-d,l-phenylalanine with BINAP metal complexes. Chemical Papers, 2014, 68, .	1.0	16
105	Enantioseparation of mandelic acid enantiomers in ionic liquid aqueous two-phase extraction systems. Chemical Papers, 2014, 68, .	1.0	11
106	Experimental and Model Study on Enantioselective Reactive Extraction of 2-chlorophenylglycine Enantiomers with BINAP-Metal Complexes. Separation Science and Technology, 2014, 49, 137-145.	1.3	3
107	Biphasic recognition chiral extraction — novel way of separating pantoprazole enantiomers. Chemical Papers, 2014, 68, .	1.0	4
108	Enantioselective extraction of clorprenaline enantiomers with hydrophilic selector of sulfobutylether-β-cyclodextrin by experiment and modeling. Journal of Central South University, 2014, 21, 891-899.	1.2	7

#	Article	IF	CITATIONS
109	Experimental and Simulation on Enantioselective Extraction in Centrifugal Contactor Separators. AICHE Journal, 2013, 59, 2594-2602.	1.8	49
110	Enantioselective extraction of hydrophilic 2-chloromandelic acid enantiomers by hydroxypropyl-β-cyclodextrin: experiments and modeling. Chemical Papers, 2013, 67, .	1.0	9
111	Enantioselective liquid–liquid extraction of (D,ÂL)â€valine using metal– <scp>BINAP</scp> complex as chiral extractant. Journal of Chemical Technology and Biotechnology, 2013, 88, 1920-1929.	1.6	12
112	Equilibrium Studies on Enantioselective Liquid–Liquid Extraction of Phenylalanine Enantiomers Using BINAP–Metal Complexes. Journal of Chemical & Engineering Data, 2012, 57, 3628-3635.	1.0	15
113	Equilibrium and Kinetics of Reactive Extraction of Ibuprofen Enantiomers from Organic Solution by Hydroxypropyl-l²-cyclodextrin. Industrial & Engineering Chemistry Research, 2012, 51, 964-971.	1.8	15
114	Enantioselective partitioning of 2-phenylpropionic acid enantiomers in a biphasic recognition chiral extraction system. Chemical Engineering Journal, 2012, 180, 293-298.	6.6	30
115	Kinetic study on biphasic recognition chiral extraction for separation of αâ€cyclohexylâ€mandelic acid enantiomers. Journal of Chemical Technology and Biotechnology, 2012, 87, 976-982.	1.6	4
116	Experimental and Modeling Studies on the Enantioselective Extraction of Hydrophobic Pranoprofen Enantiomers with Hydrophilic β-Cyclodextrin as Selectors. Journal of Chemical & Engineering Data, 2011, 56, 3902-3909.	1.0	8
117	Enantioselective extraction of terbutaline enantiomers with β-cyclodextrin derivatives as hydrophilic selectors. Chemical Papers, 2011, 65, .	1.0	7
118	Modeling multiple chemical equilibrium for reactive extraction of naproxen enantiomers with HP-Î2-CD as hydrophilic selector. Science China Chemistry, 2011, 54, 1130-1137.	4.2	1
119	Inclusion behavior of oxybutynin with hydroxypropyl-β-cyclodextrin. Central South University, 2011, 18, 1897-1901.	O.5	5
120	Equilibrium studies on enantioselective extraction of oxybutynin enantiomers by hydrophilic β yclodextrin derivatives. AICHE Journal, 2011, 57, 3027-3036.	1.8	76
121	Determination of Kinetics in Biphasic Recognition Chiral Extraction for Separation of Phenylsuccinic Acid Enantiomers. Separation Science and Technology, 2011, 46, 2099-2109.	1.3	3
122	Enantioselective extraction of fenvaleric acid enantiomers by two-phase (W/O) recognition chiral extraction. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2010, 68, 271-275.	1.6	2
123	Separation of flurbiprofen enantiomers by biphasic recognition chiral extraction. Chemical Engineering Journal, 2010, 158, 411-417.	6.6	70
124	Enantioselective separation of R,S-phenylsuccinic acid by biphasic recognition chiral extraction. Chemical Engineering Science, 2009, 64, 4081-4088.	1.9	67
125	Chiral extraction of ketoprofen enantiomers with chiral selector tartaric esters. Central South University, 2007, 14, 353-356.	0.5	4
126	Synthesis of calixarenes and their extraction performance for ester catechins. Central South University, 2007, 14, 798-802.	0.5	3