Jae Hyung Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2966542/publications.pdf

Version: 2024-02-01

361413 642732 1,386 23 20 23 h-index citations g-index papers 23 23 23 1791 times ranked docs citations citing authors all docs

#	Article	IF	CITATIONS
1	Boosting Thermal Stability of Volatile Os Catalysts by Downsizing to Atomically Dispersed Species. Jacs Au, 2022, 2, 1811-1817.	7.9	4
2	Ordered Mesoporous Carbons with Graphitic Tubular Frameworks by Dual Templating for Efficient Electrocatalysis and Energy Storage. Angewandte Chemie, 2021, 133, 1461-1469.	2.0	5
3	Ordered Mesoporous Carbons with Graphitic Tubular Frameworks by Dual Templating for Efficient Electrocatalysis and Energy Storage. Angewandte Chemie - International Edition, 2021, 60, 1441-1449.	13.8	40
4	Heteroatom-doped carbon-based oxygen reduction electrocatalysts with tailored four-electron and two-electron selectivity. Chemical Communications, 2021, 57, 7350-7361.	4.1	43
5	Single-Atom Catalysts: A Perspective toward Application in Electrochemical Energy Conversion. Jacs Au, 2021, 1, 1086-1100.	7.9	43
6	Designing highly active nanoporous carbon H2O2 production electrocatalysts through active site identification. CheM, 2021, 7, 3114-3130.	11.7	109
7	Reversible Ligand Exchange in Atomically Dispersed Catalysts for Modulating the Activity and Selectivity of the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2021, 60, 20528-20534.	13.8	27
8	Reversible Ligand Exchange in Atomically Dispersed Catalysts for Modulating the Activity and Selectivity of the Oxygen Reduction Reaction. Angewandte Chemie, 2021, 133, 20691-20697.	2.0	3
9	General Efficacy of Atomically Dispersed Pt Catalysts for the Chlorine Evolution Reaction: Potential-Dependent Switching of the Kinetics and Mechanism. ACS Catalysis, 2021, 11, 12232-12246.	11.2	40
10	A General Strategy to Atomically Dispersed Precious Metal Catalysts for Unravelling Their Catalytic Trends for Oxygen Reduction Reaction. ACS Nano, 2020, 14, 1990-2001.	14.6	116
11	Electrocatalyst design for promoting two-electron oxygen reduction reaction: Isolation of active site atoms. Current Opinion in Electrochemistry, 2020, 21, 109-116.	4.8	39
12	Atomically dispersed Pt–N4 sites as efficient and selective electrocatalysts for the chlorine evolution reaction. Nature Communications, 2020, 11, 412.	12.8	154
13	Structure-dependent catalytic properties of mesoporous cobalt oxides in furfural hydrogenation. Applied Catalysis A: General, 2019, 583, 117125.	4.3	22
14	Unassisted solar lignin valorisation using a compartmented photo-electro-biochemical cell. Nature Communications, 2019, 10, 5123.	12.8	67
15	Active Edgeâ€Siteâ€Rich Carbon Nanocatalysts with Enhanced Electron Transfer for Efficient Electrochemical Hydrogen Peroxide Production. Angewandte Chemie, 2019, 131, 1112-1117.	2.0	22
16	Active Edgeâ€iteâ€Rich Carbon Nanocatalysts with Enhanced Electron Transfer for Efficient Electrochemical Hydrogen Peroxide Production. Angewandte Chemie - International Edition, 2019, 58, 1100-1105.	13.8	244
17	Impact of Textural Properties of Mesoporous Porphyrinic Carbon Electrocatalysts on Oxygen Reduction Reaction Activity. ChemElectroChem, 2018, 5, 1928-1936.	3.4	25
18	Hierarchically porous adamantane-shaped carbon nanoframes. Journal of Materials Chemistry A, 2018, 6, 18906-18911.	10.3	29

Roles of Feâ^'N _{<i>x</i>} and Feâ^'Fe ₃ C@C Species in Feâ^'N/C Electrocatalysts for Oxygen Reduction Reaction. ACS Applied Materials & Samp; Interfaces, 2017, 9, 9567-9575.	151
Recent Progress in the Identification of Active Sites in Pyrolyzed Feâ^'N/C Catalysts and Insights into Their Role in Oxygen Reduction Reaction. Journal of Electrochemical Science and Technology, 2017, 8, 2.2 169-182.	22
Upcycling of nonporous coordination polymers: controllable-conversion toward porosity-tuned N-doped carbons and their electrocatalytic activity in seawater batteries. Journal of Materials Chemistry A, 2016, 4, 13468-13475.	29
Effect of surface oxygen functionalization of carbon support on the activity and durability of Pt/C catalysts for the oxygen reduction reaction. Carbon, 2016, 101, 449-457.	115
lmpact of framework structure of ordered mesoporous carbons on the performance of supported Pt catalysts for oxygen reduction reaction. Carbon, 2014, 72, 354-364.	37