Guillaume Lessene

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2966520/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The manipulation of apoptosis for cancer therapy using BH3-mimetic drugs. Nature Reviews Cancer, 2022, 22, 45-64.	12.8	144
2	BH3 mimetic drugs cooperate with Temozolomide, JQ1 and inducers of ferroptosis in killing glioblastoma multiforme cells. Cell Death and Differentiation, 2022, 29, 1335-1348.	5.0	15
3	Dual drug targeting to kill colon cancers. Cancer Medicine, 2022, , .	1.3	4
4	Removal of BFL-1 sensitises some melanoma cells to killing by BH3 mimetic drugs. Cell Death and Disease, 2022, 13, 301.	2.7	1
5	The Lck inhibitor, AMG-47a, blocks necroptosis and implicates RIPK1 in signalling downstream of MLKL. Cell Death and Disease, 2022, 13, 291.	2.7	10
6	Development of NanoLuc-targeting protein degraders and a universal reporter system to benchmark tag-targeted degradation platforms. Nature Communications, 2022, 13, 2073.	5.8	11
7	Insights Into Drug Repurposing, as Well as Specificity and Compound Properties of Piperidine-Based SARS-CoV-2 PLpro Inhibitors. Frontiers in Chemistry, 2022, 10, 861209.	1.8	11
8	Inhibitors of SARS-CoV-2 PLpro. Frontiers in Chemistry, 2022, 10, 876212.	1.8	38
9	Synthesis and Biological Evaluation of (â^) and (+)‧piroleucettadine and Analogues. ChemMedChem, 2021, 16, 1308-1315.	1.6	1
10	Preclinical small molecule WEHI-7326 overcomes drug resistance and elicits response in patient-derived xenograft models of human treatment-refractory tumors. Cell Death and Disease, 2021, 12, 268.	2.7	2
11	Structure-Guided Development of Potent Benzoylurea Inhibitors of BCL-X _L and BCL-2. Journal of Medicinal Chemistry, 2021, 64, 5447-5469.	2.9	5
12	BCL-XL antagonism selectively reduces neutrophil life span within inflamed tissues without causing neutropenia. Blood Advances, 2021, 5, 2550-2562.	2.5	9
13	Human RIPK3 maintains MLKL in an inactive conformation prior to cell death by necroptosis. Nature Communications, 2021, 12, 6783.	5.8	47
14	Mechanism and inhibition of the papainâ€like protease, PLpro, of SARSâ€CoVâ€2. EMBO Journal, 2020, 39, e106275.	3.5	330
15	Defining the susceptibility of colorectal cancers to BH3-mimetic compounds. Cell Death and Disease, 2020, 11, 735.	2.7	10
16	Potent Inhibition of Necroptosis by Simultaneously Targeting Multiple Effectors of the Pathway. ACS Chemical Biology, 2020, 15, 2702-2713.	1.6	22
17	Cotargeting BCL-2 and MCL-1 in high-risk B-ALL. Blood Advances, 2020, 4, 2762-2767.	2.5	28
18	MLKL trafficking and accumulation at the plasma membrane control the kinetics and threshold for necroptosis. Nature Communications, 2020, 11, 3151.	5.8	194

GUILLAUME LESSENE

#	Article	IF	CITATIONS
19	Acquired Mutations in BAX Confer Resistance to BH3 Mimetics in Acute Myeloid Leukemia. Blood, 2020, 136, 7-8.	0.6	13
20	BCLâ€XL exerts a protective role against anemia caused by radiationâ€induced kidney damage. EMBO Journal, 2020, 39, e105561.	3.5	7
21	BCL-XL inhibition by BH3-mimetic drugs induces apoptosis in models of Epstein-Barr virus-associated T/NK-cell lymphoma. Blood Advances, 2020, 4, 4775-4787.	2.5	4
22	Viral MLKL Homologs Subvert Necroptotic Cell Death by Sequestering Cellular RIPK3. Cell Reports, 2019, 28, 3309-3319.e5.	2.9	83
23	A small molecule interacts with VDAC2 to block mouse BAK-driven apoptosis. Nature Chemical Biology, 2019, 15, 1057-1066.	3.9	30
24	Structures of BCL-2 in complex with venetoclax reveal the molecular basis of resistance mutations. Nature Communications, 2019, 10, 2385.	5.8	139
25	Combining BH3-mimetics to target both BCL-2 and MCL1 has potent activity in pre-clinical models of acute myeloid leukemia. Leukemia, 2019, 33, 905-917.	3.3	126
26	BAK/BAX macropores facilitate mitochondrial herniation and mtDNA efflux during apoptosis. Science, 2018, 359, .	6.0	581
27	The Synthesis of (–)-Spiroleucettadine. Synlett, 2018, 29, 1125-1130.	1.0	4
28	The Mitochondrial Apoptotic Effectors BAX/BAK Activate Caspase-3 and -7 to Trigger NLRP3 Inflammasome and Caspase-8 Driven IL-11 ² Activation. Cell Reports, 2018, 25, 2339-2353.e4.	2.9	164
29	BH3-Mimetic Drugs: Blazing the Trail for New Cancer Medicines. Cancer Cell, 2018, 34, 879-891.	7.7	250
30	Humanized Mcl-1 mice enable accurate preclinical evaluation of MCL-1 inhibitors destined for clinical use. Blood, 2018, 132, 1573-1583.	0.6	67
31	Strategies, Setbacks, and Successes in the Synthesis of (â^')-Spiroleucettadine. Journal of Organic Chemistry, 2018, 83, 10120-10133.	1.7	6
32	Dual inhibition of BCL-XL and MCL-1 is required to induce tumour regression in lung squamous cell carcinomas sensitive to FGFR inhibition. Oncogene, 2018, 37, 4475-4488.	2.6	75
33	Conformational switching of the pseudokinase domain promotes human MLKL tetramerization and cell death by necroptosis. Nature Communications, 2018, 9, 2422.	5.8	154
34	Inhibition of Hematopoietic Cell Kinase Activity Suppresses Myeloid Cell-Mediated Colon Cancer Progression. Cancer Cell, 2017, 31, 563-575.e5.	7.7	57
35	ATF3 Repression of BCL-XL Determines Apoptotic Sensitivity to HDAC Inhibitors across Tumor Types. Clinical Cancer Research, 2017, 23, 5573-5584.	3.2	46
36	Total Synthesis of (â^')â€ 5 piroleucettadine. Angewandte Chemie - International Edition, 2017, 56, 14663-14666.	7.2	12

GUILLAUME LESSENE

#	Article	IF	CITATIONS
37	Total Synthesis of (â^')‧piroleucettadine. Angewandte Chemie, 2017, 129, 14855-14858.	1.6	1
38	Synergistic action of the MCL-1 inhibitor S63845 with current therapies in preclinical models of triple-negative and HER2-amplified breast cancer. Science Translational Medicine, 2017, 9, .	5.8	148
39	Conversion of Bim-BH3 from Activator to Inhibitor of Bak through Structure-Based Design. Molecular Cell, 2017, 68, 659-672.e9.	4.5	57
40	The BH3-only proteins BIM and PUMA are not critical for the reticulocyte apoptosis caused by loss of the pro-survival protein BCL-XL. Cell Death and Disease, 2017, 8, e2914-e2914.	2.7	18
41	Computationally designed high specificity inhibitors delineate the roles of BCL2 family proteins in cancer. ELife, 2016, 5, .	2.8	65
42	BAX-BAK1-independent LC3B lipidation by BH3 mimetics is unrelated to BH3 mimetic activity and has only minimal effects on autophagic flux. Autophagy, 2016, 12, 1083-1093.	4.3	16
43	Hepatocyte growth factor renders BRAF mutant human melanoma cell lines resistant to PLX4032 by downregulating the pro-apoptotic BH3-only proteins PUMA and BIM. Cell Death and Differentiation, 2016, 23, 2054-2062.	5.0	24
44	Hierarchy for targeting prosurvival BCL2 family proteins in multiple myeloma: pivotal role of MCL1. Blood, 2016, 128, 1834-1844.	0.6	127
45	Eliminating Legionella by inhibiting BCL-XL to induce macrophage apoptosis. Nature Microbiology, 2016, 1, 15034.	5.9	75
46	The MCL1 inhibitor S63845 is tolerable and effective in diverse cancer models. Nature, 2016, 538, 477-482.	13.7	830
47	Small molecules targeting Mcl-1: the search for a silver bullet in cancer therapy. MedChemComm, 2016, 7, 778-787.	3.5	16
48	Exploiting the Biginelli reaction: nitrogen-rich pyrimidine-based tercyclic α-helix mimetics. Tetrahedron, 2016, 72, 1151-1160.	1.0	8
49	A RIPK2 inhibitor delays NOD signalling events yet prevents inflammatory cytokine production. Nature Communications, 2015, 6, 6442.	5.8	112
50	Targeting cell death pathways with small molecules: playing with life and death at the cellular level to treat diseases. Future Medicinal Chemistry, 2015, 7, 2099-2102.	1.1	2
51	Insights into the evolution of divergent nucleotide-binding mechanisms among pseudokinases revealed by crystal structures of human and mouse MLKL. Biochemical Journal, 2014, 457, 369-377.	1.7	92
52	Apoptotic Caspases Suppress mtDNA-Induced STING-Mediated Type I IFN Production. Cell, 2014, 159, 1549-1562.	13.5	698
53	Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nature Reviews Molecular Cell Biology, 2014, 15, 49-63.	16.1	2,444
54	Activation of the pseudokinase MLKL unleashes the four-helix bundle domain to induce membrane localization and necroptotic cell death. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15072-15077.	3.3	484

GUILLAUME LESSENE

#	Article	IF	CITATIONS
55	De-Novo Designed Library of Benzoylureas as Inhibitors of BCL-X _L : Synthesis, Structural and Biochemical Characterization. Journal of Medicinal Chemistry, 2014, 57, 1323-1343.	2.9	33
56	Structure-Guided Rescaffolding of Selective Antagonists of BCL-X _L . ACS Medicinal Chemistry Letters, 2014, 5, 662-667.	1.3	37
57	Discovery of a Potent and Selective BCL-X _L Inhibitor with <i>in Vivo</i> Activity. ACS Medicinal Chemistry Letters, 2014, 5, 1088-1093.	1.3	242
58	Structure-guided design of a selective BCL-XL inhibitor. Nature Chemical Biology, 2013, 9, 390-397.	3.9	324
59	Discovery of Potent and Selective Benzothiazole Hydrazone Inhibitors of Bcl-X _L . Journal of Medicinal Chemistry, 2013, 56, 5514-5540.	2.9	60
60	Crystallization and preliminary X-ray characterization of Epstein–Barr virus BHRF1 in complex with a benzoylurea peptidomimetic. Acta Crystallographica Section F: Structural Biology Communications, 2012, 68, 1521-1524.	0.7	4
61	Synthesis of conformationally constrained benzoylureas as BH3-mimetics. Organic and Biomolecular Chemistry, 2012, 10, 5230.	1.5	16
62	Quinazoline Sulfonamides as Dual Binders of the Proteins B-Cell Lymphoma 2 and B-Cell Lymphoma Extra Long with Potent Proapoptotic Cell-Based Activity. Journal of Medicinal Chemistry, 2011, 54, 1914-1926.	2.9	62
63	Bcl-2 Family Proteins as Therapeutic Targets. Current Pharmaceutical Design, 2010, 16, 3132-3148.	0.9	32
64	Conformational Changes in Bcl-2 Pro-survival Proteins Determine Their Capacity to Bind Ligands. Journal of Biological Chemistry, 2009, 284, 30508-30517.	1.6	79
65	Characterization of the Two Fundamental Conformations of Benzoylureas and Elucidation of the Factors That Facilitate Their Conformational Interchange. Journal of Organic Chemistry, 2009, 74, 6511-6525.	1.7	25
66	BCL-2 family antagonists for cancer therapy. Nature Reviews Drug Discovery, 2008, 7, 989-1000.	21.5	549
67	Spiroleucettadine: synthetic studies and investigations towards structural revision. Tetrahedron Letters, 2007, 48, 2199-2203.	0.7	28
68	A Concise Total Synthesis of Naamidine A. Organic Letters, 2006, 8, 419-421.	2.4	49