Pavlina Hasalova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2966314/publications.pdf

Version: 2024-02-01

36 1,366
papers citations

304743 395702 33 h-index g-index

36 36 all docs citations

36 times ranked 1265 citing authors

#	Article	IF	Citations
1	Monazite geochronology in melt-percolated UHP meta-granitoids: An example from the Erzgebirge continental subduction wedge, Bohemian Massif. Chemical Geology, 2021, 559, 119919.	3.3	14
2	Decoupled U-Pb date and chemical zonation of monazite in migmatites: The case for disturbance of isotopic systematics by coupled dissolution-reprecipitation. Geochimica Et Cosmochimica Acta, 2020, 269, 398-412.	3.9	35
3	Exhumation of subducted continental crust along the arc region. Gondwana Research, 2020, 80, 157-187.	6.0	10
4	Thermal and mechanical evolution of collisional and accretionary orogens: a volume in honour of Karel Schulmannâ€"an introduction. International Journal of Earth Sciences, 2020, 109, 1099-1103.	1.8	0
5	Syn-deformational melt percolation through a high-pressure orthogneiss and the exhumation of a subducted continental wedge (Orlica-Śnieżnik Dome, NE Bohemian Massif). International Journal of Earth Sciences, 2020, 109, 1213-1246.	1.8	2
6	Was the Tynong Batholith, Lachlan Orogen, Australia, extremely hot? Application of pseudosection modelling and TitaniQ geothermometry. Journal of Geosciences (Czech Republic), 2020, , 121-138.	0.6	0
7	A 60-Myr record of continental back-arc differentiation through cyclic melting. Nature Geoscience, 2019, 12, 215-219.	12.9	56
8	The Effect of Melt Infiltration on Metagranitic Rocks: the Snieznik Dome, Bohemian Massif. Journal of Petrology, 2019, 60, 591-618.	2.8	13
9	Role of strain localization and melt flow on exhumation of deeply subducted continental crust. Lithosphere, 2018, 10, 217-238.	1.4	33
10	Lowâ€ <i>P</i> melting of metapelitic rocks and the role of H ₂ O: Insights from phase equilibria modelling. Journal of Metamorphic Geology, 2017, 35, 1131-1159.	3.4	26
11	Magnetic fabric transposition in folded granite sills in Variscan orogenic wedge. Journal of Structural Geology, 2017, 94, 166-183.	2.3	9
12	How Melt Segregation Affects Granite Chemistry: Migmatites from the Sierra de Quilmes, NW Argentina. Journal of Petrology, 2017, 58, 2339-2364.	2.8	24
13	Tectono-metamorphic evolution of a convergent back-arc: The Famatinian orogen, Sierra de Quilmes, Sierras Pampeanas, NW Argentina. Bulletin of the Geological Society of America, 2017, , .	3.3	2
14	Detachment folding of partially molten crust in accretionary orogens: A new magma-enhanced vertical mass and heat transfer mechanism. Lithosphere, 2017, 9, 889-909.	1.4	23
15	Fabric controls on strain accommodation in naturally deformed mylonites: The influence of interconnected micaceous layers. Journal of Structural Geology, 2016, 83, 180-193.	2.3	38
16	Reply to comment by J.D. Clemens and G. Stevens on †Water-fluxed melting of the continental crust: A review†M. Lithos, 2015, 234-235, 102-103.	1.4	17
17	Strain accommodation in monomineralic and polymineralic mylonites of the Main Central Thrust (Alakhnanda Region, Garhwal Himalaya). Geotectonic Research, 2015, 97, 50-52.	0.1	O
18	Importance of crustal relamination in origin of the orogenic mantle peridotite–high-pressure granulite association: example from the Náměšť Granulite Massif (Bohemian Massif, Czech Republic). Journal of the Geological Society, 2015, 172, 479-490.	2.1	36

#	Article	IF	CITATIONS
19	Monazite Dating of Prograde and Retrograde P–T–d paths in the Barrovian terrane of the Thaya window, Bohemian Massif. Journal of Petrology, 2015, 56, 1007-1035.	2.8	46
20	Reply to comment by S.H. BÃ⅓ttner on: "One kilometre-thick ultramylonite, Sierra de Quilmes, Sierras Pampeanas, NW Argentina― Journal of Structural Geology, 2015, 76, 84-85.	2.3	2
21	<i>P–T–t–D</i> record of crustalâ€scale horizontal flow and magmaâ€ssisted doming in the <scp>SW</scp> Mongolian Altai. Journal of Metamorphic Geology, 2015, 33, 359-383.	3.4	34
22	One kilometre-thick ultramylonite, Sierra de Quilmes, Sierras Pampeanas, NW Argentina. Journal of Structural Geology, 2015, 72, 33-54.	2.3	20
23	Flow behaviour in the intra-caldera setting: an AMS study of the large (>1290 km ³) Permian Ora ignimbrite. Geological Society Special Publication, 2015, 396, 177-204.	1.3	11
24	Microstructural evidences for mineralogical inheritance in partially molten rocks: example from the Vosges Mts. Bulletin - Societie Geologique De France, 2015, 186, 131-143.	2.2	5
25	Water-fluxed melting of the continental crust: A review. Lithos, 2015, 212-215, 158-188.	1.4	401
26	Switch from thrusting to normal shearing in the Zanskar shear zone, NW Himalaya: Implications for channel flow. Bulletin of the Geological Society of America, 2014, 126, 892-924.	3.3	51
27	Investigation of the H7 ordinary chondrite, Watson 012: Implications for recognition and classification of Type 7 meteorites. Geochimica Et Cosmochimica Acta, 2014, 134, 175-196.	3.9	34
28	Late Paleozoic–Mesozoic tectonic evolution of the Trans-Altai and South Gobi Zones in southern Mongolia based on structural and geochronological data. Gondwana Research, 2014, 25, 309-337.	6.0	66
29	Multiple intrusions and remelting-remobilization events in a magmatic arc: The St. Peter Suite, South Australia. Bulletin of the Geological Society of America, 2014, 126, 1200-1218.	3.3	25
30	Interaction between deformation and magma extraction in migmatites: Examples from Kangaroo Island, South Australia. Bulletin of the Geological Society of America, 2013, 125, 1282-1300.	3.3	30
31	Microstructural evidence for magma confluence and reusage of magma pathways: implications for magma hybridization, Karakoram Shear Zone in NW India. Journal of Metamorphic Geology, 2011, 29, 875-900.	3.4	37
32	Evaluating quartz crystallographic preferred orientations and the role of deformation partitioning using EBSD and fabric analyser techniques. Journal of Structural Geology, 2010, 32, 803-817.	2.3	75
33	Influence of melt induced mechanical anisotropy on the magnetic fabrics and rheology of deforming migmatites, Central Vosges, France. Journal of Structural Geology, 2009, 31, 1223-1237.	2.3	25
34	Transforming mylonitic metagranite by openâ€system interactions during melt flow. Journal of Metamorphic Geology, 2008, 26, 55-80.	3.4	35
35	Origin of migmatites by deformationâ€enhanced melt infiltration of orthogneiss: a new model based on quantitative microstructural analysis. Journal of Metamorphic Geology, 2008, 26, 29-53.	3.4	89
36	From orthogneiss to migmatite: Geochemical assessment of the melt infiltration model in the GfÃ \P hl Unit (Moldanubian Zone, Bohemian Massif). Lithos, 2008, 102, 508-537.	1.4	42

3