Michal Michalak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2966211/publications.pdf

Version: 2024-02-01

471061 642321 30 534 17 23 citations h-index g-index papers 37 37 37 664 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The synthesis of cardenolide and bufadienolide aglycones, and related steroids bearing a heterocyclic subunit. Natural Product Reports, 2017, 34, 361-410.	5.2	43
2	A Formal Synthesis of Ezetimibe via Cycloaddition/Rearrangement Cascade Reaction. Journal of Organic Chemistry, 2011, 76, 6931-6936.	1.7	38
3	A New Family of Halogenâ€Chelated Hoveyda–Grubbsâ€Type Metathesis Catalysts. Chemistry - A European Journal, 2012, 18, 14237-14241.	1.7	37
4	NHC–Copper(I) Halide atalyzed Direct Alkynylation of Trifluoromethyl Ketones on Water. Chemistry - A European Journal, 2016, 22, 8089-8094.	1.7	29
5	Studies toward the total synthesis of di- and sesterterpenes with a dicyclopenta[a,d]cyclooctane skeleton. Construction of a versatile A/B ring building block via a ring-closing metathesis reaction and carbocationic rearrangement. Tetrahedron Letters, 2005, 46, 1149-1153.	0.7	28
6	Controlling the stereoselectivity of rac-LA polymerization by chiral recognition induced the formation of homochiral dimeric metal alkoxides. Polymer Chemistry, 2016, 7, 2022-2036.	1.9	25
7	NHC-Cu(I)-Catalyzed FriedlÃ μ der-Type Annulation of Fluorinated <i>0</i> -Aminophenones with Alkynes on Water: Competitive Base-Catalyzed Dibenzo[<i>b</i> , <i>f</i>][1,5]diazocine Formation. Journal of Organic Chemistry, 2017, 82, 7980-7997.	1.7	25
8	Elimination versus Ring Opening: A Convergent Route to Alkylidene-Cyclobutanes. Organic Letters, 2011, 13, 6296-6299.	2.4	24
9	Diastereoselective synthesis of propargylic N-hydroxylamines via NHC–copper(<scp>i</scp>) halide-catalyzed reaction of terminal alkynes with chiral nitrones on water. Chemical Communications, 2015, 51, 1933-1936.	2.2	24
10	Studies Towards the Total Synthesis of Di- and Sesterterpenes with Dicyclopenta[a,d]cyclooctane Skeletons. Three-component Approach to the A/B Rings Building Block. Molecules, 2005, 10, 1084-1100.	1.7	23
11	Unequal siblings: Adverse characteristics of naphtaleneâ€based hoveydaâ€type second generation initiators in ring opening metathesis polymerization. Journal of Polymer Science Part A, 2011, 49, 3448-3454.	2.5	22
12	Synthetic Studies on Dicyclopenta[a,d]cyclooctane Terpenoids: Construction of the Core Structure of Fusicoccins and Ophiobolins on the Route Involving a Wagner-Meerwein Rearrangement. Journal of Organic Chemistry, 2011, 76, 7497-7509.	1.7	21
13	Studies on the Enantioselective Kinugasa Reaction: Efficient Synthesis of βâ€Lactams Catalyzed by <i>N</i> â€PINAP/CuX Complexes. European Journal of Organic Chemistry, 2016, 2016, 2212-2219.	1.2	21
14	NHC-copper complexes immobilized on magnetic nanoparticles: Synthesis and catalytic activity in the CuAAC reactions. Journal of Catalysis, 2018, 362, 46-54.	3.1	21
15	Application of a metathesis reaction in the synthesis of sterically congested medium-sized rings. A direct ring closing versus a double bond migration–ring closing process. Organic and Biomolecular Chemistry, 2011, 9, 3439.	1.5	20
16	Steric Control of \hat{l}_{\pm} - and \hat{l}^2 -Alkylation of Azulenone Intermediates in a Guanacastepene A Synthesis. Journal of Organic Chemistry, 2010, 75, 762-766.	1.7	18
17	Synthesis of N,4-diaryl substituted ?-lactams via Kinugasa cycloaddition/rearrangement reaction. Tetrahedron, 2012, 68, 10806-10817.	1.0	18
18	Construction of the Tricyclic 5â^'7â^'6 Scaffold of Fungi-Derived Diterpenoids. Total Synthesis of (±)-Heptemerone G and an Approach to Danishefsky's Intermediate for Guanacastepene A Synthesis. Journal of Organic Chemistry, 2010, 75, 8337-8350.	1.7	16

#	Article	IF	CITATIONS
19	Application of Piperazine-Derived Hydrazone Linkers for Alkylation of Solid-Phase Immobilized Ketones. Synlett, 2002, 2002, 1931-1934.	1.0	15
20	A synthetic approach to the functionalized hydroazulene core of guanacastepenes and heptemerenes. Tetrahedron Letters, 2008, 49, 6807-6809.	0.7	14
21	Synthetic Approaches to Chiral Non-C 2-symmetric N-Heterocyclic Carbene Precursors. Synthesis, 2019, 51, 1689-1714.	1.2	12
22	Acenaphthene-Based N-Heterocyclic Carbene Metal Complexes: Synthesis and Application in Catalysis. Catalysts, 2021, 11, 972.	1.6	10
23	A facile construction of the tricyclic 5-7-6 scaffold of fungi-derived diterpenoids. The first total synthesis of (±)-heptemerone G and a new approach to Danishefsky's intermediate for a guanacastepene A synthesis. Tetrahedron Letters, 2010, 51, 4344-4346.	0.7	7
24	Initiation efficacy of halo-chelated cis-dichloro-configured ruthenium-based second-generation benzylidene complexes in ring-opening metathesis polymerization. Monatshefte FÃ $\frac{1}{4}$ r Chemie, 2015, 146, 1153-1160.	0.9	6
25	NHC–BIAN–Cu(I)-Catalyzed Friedläder-Type Annulation of 2-Amino-3-(per)fluoroacetylpyridines with Alkynes on Water. Journal of Organic Chemistry, 2022, 87, 6115-6136.	1.7	6
26	Practical One-Pot Synthesis of Protected l-Glyceraldehyde Derivatives. Synthesis, 2012, 44, 2695-2698.	1.2	4
27	Base-Catalyzed, Solvent-Free Synthesis of Rigid V-Shaped Epoxydibenzo[b,f][1,5]diazocines. Journal of Organic Chemistry, 2021, 86, 8955-8969.	1.7	4
28	Non-Kolbe electrolysis of N-protected-î±-amino acids: a standardized method for the synthesis of N-protected (1-methoxyalkyl)amines. RSC Advances, 2022, 12, 2107-2114.	1.7	2
29	Efficient Olefin Isomerization-Ring-Closing Metathesis Reaction in Sterically Hindered Systems: Study on Simultaneous Use of the Grubbs Metathesis and Ruthenium Hydride Isomerization Catalysts. Synlett, 2005, 2005, 2277-2280.	1.0	1
30	Epoxydibenzo $[b,f][1,5]$ diazocines: From a Hidden Structural Motif to an Efficient Solvent-Free Synthetic Protocol. Synthesis, $0,$	1.2	0