Valérie Ravaine

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2966041/publications.pdf

Version: 2024-02-01

46 papers 2,536 citations

236612 25 h-index 42 g-index

46 all docs

46 docs citations

46 times ranked 2656 citing authors

#	Article	IF	Citations
1	Thermo-induced inversion of water-in-water emulsion stability by bis-hydrophilic microgels. Journal of Colloid and Interface Science, 2022, 608, 1191-1201.	5.0	21
2	Pickering emulsions stabilized by thermoresponsive oligo(ethylene glycol)-based microgels: Effect of temperature-sensitivity on emulsion stability. Journal of Colloid and Interface Science, 2021, 589, 96-109.	5.0	27
3	Sugar-responsive Pickering emulsions mediated by switching hydrophobicity in microgels. Journal of Colloid and Interface Science, 2020, 561, 481-493.	5.0	26
4	Janus Microswimmers: Oscillatory Lightâ€Emitting Biopolymer Based Janus Microswimmers (Adv. Mater.) Tj ETQ	q0 0 0 rgB	T /Overlock 10
5	Electrochemiluminescence in Thermo-Responsive Hydrogel Films with Tunable Thickness. Journal of Analysis and Testing, 2020, 4, 107-113.	2.5	0
6	Oscillatory Lightâ€Emitting Biopolymer Based Janus Microswimmers. Advanced Materials Interfaces, 2020, 7, 1902094.	1.9	13
7	Dynamic Covalent Chemistry Enables Reconfigurable Allâ€Polysaccharide Nanogels. Macromolecular Rapid Communications, 2020, 41, e2000213.	2.0	12
8	Asymmetric Modification of Carbon Nanotube Arrays with Thermoresponsive Hydrogel for Controlled Delivery. ACS Applied Materials & Samp; Interfaces, 2020, 12, 23378-23387.	4.0	10
9	Self-coacervation of ampholyte polymer chains as an efficient encapsulation strategy. Journal of Colloid and Interface Science, 2019, 548, 275-283.	5.0	16
10	Kinetics of spontaneous microgels adsorption and stabilization of emulsions produced using microfluidics. Journal of Colloid and Interface Science, 2019, 548, 1-11.	5.0	29
11	Sealing hyaluronic acid microgels with oppositely-charged polypeptides: A simple strategy for packaging hydrophilic drugs with on-demand release. Journal of Colloid and Interface Science, 2019, 535, 16-27.	5.0	16
12	Tuning Electrochemiluminescence in Multistimuli Responsive Hydrogel Films. Journal of Physical Chemistry Letters, 2018, 9, 340-345.	2.1	29
13	Poly(aspartic acid) hydrogels showing reversible volume change upon redox stimulus. European Polymer Journal, 2018, 105, 459-468.	2.6	20
14	Modulation of Wetting Gradients by Tuning the Interplay between Surface Structuration and Anisotropic Molecular Layers with Bipolar Electrochemistry. ChemPhysChem, 2017, 18, 2637-2642.	1.0	13
15	Modulation of Wetting Gradients by Tuning the Interplay between Surface Structuration and Anisotropic Molecular Layers with Bipolar Electrochemistry. ChemPhysChem, 2017, 18, 2557-2557.	1.0	O
16	Organization of Microgels at the Air–Water Interface under Compression: Role of Electrostatics and Cross-Linking Density. Langmuir, 2017, 33, 7968-7981.	1.6	75
17	Two-Dimensional Electrochemiluminescence: Light Emission Confined at the Oil–Water Interface in Emulsions Stabilized by Luminophore-Grafted Microgels. Langmuir, 2017, 33, 7231-7238.	1.6	16
18	Electric fields for generating unconventional motion of small objects. Current Opinion in Colloid and Interface Science, 2016, 21, 57-64.	3.4	53

#	Article	IF	CITATIONS
19	Antagonistic effects leading to turn-on electrochemiluminescence in thermoresponsive hydrogel films. Physical Chemistry Chemical Physics, 2016, 18, 32697-32702.	1.3	14
20	Wireless Synthesis and Activation of Electrochemiluminescent Thermoresponsive Janus Objects Using Bipolar Electrochemistry. Langmuir, 2016, 32, 12995-13002.	1.6	29
21	Redox―and pHâ€Responsive Nanogels Based on Thiolated Poly(aspartic acid). Macromolecular Materials and Engineering, 2016, 301, 260-266.	1.7	35
22	Wall slip across the jamming transition of soft thermoresponsive particles. Physical Review E, 2015, 92, 060301.	0.8	23
23	Differential Photoluminescent and Electrochemiluminescent Behavior for Resonance Energy Transfer Processes in Thermoresponsive Microgels. Journal of Physical Chemistry B, 2015, 119, 12954-12961.	1.2	21
24	Impact of Electrostatics on the Adsorption of Microgels at the Interface of Pickering Emulsions. Langmuir, 2014, 30, 14745-14756.	1.6	45
25	Impact of pNIPAM Microgel Size on Its Ability To Stabilize Pickering Emulsions. Langmuir, 2014, 30, 1768-1777.	1.6	100
26	Readily Prepared Dynamic Hydrogels by Combining Phenyl Boronic Acid―and Maltoseâ€Modified Anionic Polysaccharides at Neutral pH. Macromolecular Rapid Communications, 2014, 35, 2089-2095.	2.0	72
27	Adsorption of microgels at an oil–water interface: correlation between packing and 2D elasticity. Soft Matter, 2014, 10, 6963-6974.	1.2	123
28	Thiol-ene clickable hyaluronans: From macro-to nanogels. Journal of Colloid and Interface Science, 2014, 419, 52-55.	5.0	14
29	Photochemical crosslinking of hyaluronic acid confined in nanoemulsions: towards nanogels with a controlled structure. Journal of Materials Chemistry B, 2013, 1, 3369.	2.9	46
30	Pickering Emulsions Stabilized by Soft Microgels: Influence of the Emulsification Process on Particle Interfacial Organization and Emulsion Properties. Langmuir, 2013, 29, 12367-12374.	1.6	118
31	Surface compaction versus stretching in Pickering emulsions stabilised by microgels. Current Opinion in Colloid and Interface Science, 2013, 18, 532-541.	3.4	105
32	Enhanced Electrogenerated Chemiluminescence in Thermoresponsive Microgels. Journal of the American Chemical Society, 2013, 135, 5517-5520.	6.6	74
33	Origin and Control of Adhesion between Emulsion Drops Stabilized by Thermally Sensitive Soft Colloidal Particles. Langmuir, 2012, 28, 3744-3755.	1.6	94
34	Soft microgels as Pickering emulsion stabilisers: role of particle deformability. Soft Matter, 2011, 7, 7689.	1.2	315
35	Water-in-Oil Emulsions Stabilized by Water-Dispersible Poly(<i>N</i> i>-isopropylacrylamide) Microgels: Understanding Anti-Finkle Behavior. Langmuir, 2011, 27, 14096-14107.	1.6	91
36	Designed Glucose-Responsive Microgels with Selective Shrinking Behavior. Langmuir, 2011, 27, 12693-12701.	1.6	77

#	Article	IF	CITATIONS
37	Multiresponsive Hybrid Microgels and Hollow Capsules with a Layered Structure. Langmuir, 2009, 25, 4659-4667.	1.6	79
38	Multicomponent macroporous materials with a controlled architecture. Journal of Materials Chemistry, 2009, 19, 409-414.	6.7	12
39	Single-Crystalline Gold Nanoplates from a Commercial Gold Plating Solution. Journal of Nanoscience and Nanotechnology, 2009, 9, 2045-2050.	0.9	O
40	Glucose-responsive microgels with a core–shell structure. Journal of Colloid and Interface Science, 2008, 327, 316-323.	5.0	136
41	Chemically controlled closed-loop insulin delivery. Journal of Controlled Release, 2008, 132, 2-11.	4.8	233
42	Dissymmetric Carbon Nanotubes by Bipolar Electrochemistry. Nano Letters, 2008, 8, 500-504.	4.5	116
43	Remotein vivoimaging of human skin corneocytes by means of an optical fiber bundle. Review of Scientific Instruments, 2007, 78, 053709.	0.6	11
44	Monodispersed Glucose-Responsive Microgels Operating at Physiological Salinity. Biomacromolecules, 2006, 7, 3356-3363.	2.6	167
45	Full verification of the liquid exclusion-adsorption chromatography theory using monolithic capillary columns. Journal of Chromatography A, 2005, 1074, 89-98.	1.8	6
46	Wetting of Liquid Droplets on Living Cells. Journal of Colloid and Interface Science, 2002, 255, 270-273.	5.0	4