
Samira Siahrostami

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2965875/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Understanding Catalytic Activity Trends in the Oxygen Reduction Reaction. Chemical Reviews, 2018, 118, 2302-2312.	23.0	1,666
2	High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials. Nature Catalysis, 2018, 1, 156-162.	16.1	1,120
3	Enabling direct H2O2 production through rational electrocatalyst design. Nature Materials, 2013, 12, 1137-1143.	13.3	1,031
4	Isolated Ni single atoms in graphene nanosheets for high-performance CO ₂ reduction. Energy and Environmental Science, 2018, 11, 893-903.	15.6	811
5	Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst. Nature Communications, 2021, 12, 2870.	5.8	605
6	Highly selective oxygen reduction to hydrogen peroxide on transition metal single atom coordination. Nature Communications, 2019, 10, 3997.	5.8	528
7	Trends in the Electrochemical Synthesis of H ₂ O ₂ : Enhancing Activity and Selectivity by Electrocatalytic Site Engineering. Nano Letters, 2014, 14, 1603-1608.	4.5	521
8	The oxygen reduction reaction mechanism on Pt(111) from density functional theory calculations. Electrochimica Acta, 2010, 55, 7975-7981.	2.6	491
9	Understanding activity trends in electrochemical water oxidation to form hydrogen peroxide. Nature Communications, 2017, 8, 701.	5.8	333
10	Transition-Metal Single Atoms in a Graphene Shell as Active Centers for Highly Efficient Artificial Photosynthesis. CheM, 2017, 3, 950-960.	5.8	326
11	Designing Boron Nitride Islands in Carbon Materials for Efficient Electrochemical Synthesis of Hydrogen Peroxide. Journal of the American Chemical Society, 2018, 140, 7851-7859.	6.6	310
12	Introducing Fe ²⁺ into Nickel–Iron Layered Double Hydroxide: Local Structure Modulated Water Oxidation Activity. Angewandte Chemie - International Edition, 2018, 57, 9392-9396.	7.2	284
13	Building and identifying highly active oxygenated groups in carbon materials for oxygen reduction to H2O2. Nature Communications, 2020, 11, 2209.	5.8	281
14	A Review on Challenges and Successes in Atomic-Scale Design of Catalysts for Electrochemical Synthesis of Hydrogen Peroxide. ACS Catalysis, 2020, 10, 7495-7511.	5.5	254
15	Confined local oxygen gas promotes electrochemical water oxidation to hydrogen peroxide. Nature Catalysis, 2020, 3, 125-134.	16.1	252
16	Beyond the top of the volcano? – A unified approach to electrocatalytic oxygen reduction and oxygen evolution. Nano Energy, 2016, 29, 126-135.	8.2	248
17	Defective Carbon-Based Materials for the Electrochemical Synthesis of Hydrogen Peroxide. ACS Sustainable Chemistry and Engineering, 2018, 6, 311-317.	3.2	236
18	One- or Two-Electron Water Oxidation, Hydroxyl Radical, or H ₂ O ₂ Evolution. Journal of Physical Chemistry Letters, 2017, 8, 1157-1160.	2.1	234

#	Article	IF	CITATIONS
19	Promoting H2O2 production via 2-electron oxygen reduction by coordinating partially oxidized Pd with defect carbon. Nature Communications, 2020, 11, 2178.	5.8	209
20	ZnO As an Active and Selective Catalyst for Electrochemical Water Oxidation to Hydrogen Peroxide. ACS Catalysis, 2019, 9, 4593-4599.	5.5	176
21	Monocopper Active Site for Partial Methane Oxidation in Cu-Exchanged 8MR Zeolites. ACS Catalysis, 2016, 6, 6531-6536.	5.5	173
22	Selective and Efficient Gd-Doped BiVO ₄ Photoanode for Two-Electron Water Oxidation to H ₂ O ₂ . ACS Energy Letters, 2019, 4, 720-728.	8.8	165
23	Development of a reactor with carbon catalysts for modular-scale, low-cost electrochemical generation of H ₂ O ₂ . Reaction Chemistry and Engineering, 2017, 2, 239-245.	1.9	157
24	Electrochemical Synthesis of H2O2 by Two-Electron Water Oxidation Reaction. CheM, 2021, 7, 38-63.	5.8	155
25	CaSnO ₃ : An Electrocatalyst for Two-Electron Water Oxidation Reaction to Form H ₂ O ₂ . ACS Energy Letters, 2019, 4, 352-357.	8.8	148
26	Mechanochemistry for ammonia synthesis under mild conditions. Nature Nanotechnology, 2021, 16, 325-330.	15.6	141
27	A Porphyrinic Zirconium Metal–Organic Framework for Oxygen Reduction Reaction: Tailoring the Spacing between Active-Sites through Chain-Based Inorganic Building Units. Journal of the American Chemical Society, 2020, 142, 15386-15395.	6.6	139
28	Cation-exchanged zeolites for the selective oxidation of methane to methanol. Catalysis Science and Technology, 2018, 8, 114-123.	2.1	135
29	Effects of redox-active interlayer anions on the oxygen evolution reactivity of NiFe-layered double hydroxide nanosheets. Nano Research, 2018, 11, 1358-1368.	5.8	134
30	Enhancing Catalytic Activity of MoS ₂ Basal Plane S-Vacancy by Co Cluster Addition. ACS Energy Letters, 2018, 3, 2685-2693.	8.8	121
31	Lightâ€Driven BiVO ₄ –C Fuel Cell with Simultaneous Production of H ₂ O ₂ . Advanced Energy Materials, 2018, 8, 1801158.	10.2	107
32	Theoretical Investigations into Defected Graphene for Electrochemical Reduction of CO ₂ . ACS Sustainable Chemistry and Engineering, 2017, 5, 11080-11085.	3.2	93
33	Introducing Fe ²⁺ into Nickel–Iron Layered Double Hydroxide: Local Structure Modulated Water Oxidation Activity. Angewandte Chemie, 2018, 130, 9536-9540.	1.6	86
34	Precious Metal-Free Nickel Nitride Catalyst for the Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2019, 11, 26863-26871.	4.0	81
35	Theoretical Approaches to Describing the Oxygen Reduction Reaction Activity of Single-Atom Catalysts. Journal of Physical Chemistry C, 2018, 122, 29307-29318.	1.5	68
36	Influence of Adsorbed Water on the Oxygen Evolution Reaction on Oxides. Journal of Physical Chemistry C, 2015, 119, 1032-1037.	1.5	66

#	Article	IF	CITATIONS
37	High-performance oxygen reduction and evolution carbon catalysis: From mechanistic studies to device integration. Nano Research, 2017, 10, 1163-1177.	5.8	66
38	Orbital graph convolutional neural network for material property prediction. Physical Review Materials, 2020, 4, .	0.9	64
39	A review on electrocatalytic oxidation of methane to oxygenates. Journal of Materials Chemistry A, 2020, 8, 15575-15590.	5.2	62
40	Ligand-Engineered Metal–Organic Frameworks for Electrochemical Reduction of Carbon Dioxide to Carbon Monoxide. ACS Catalysis, 2021, 11, 7350-7357.	5.5	62
41	Coproduction of hydrogen and lactic acid from glucose photocatalysis on band-engineered Zn1-xCdxS homojunction. IScience, 2021, 24, 102109.	1.9	61
42	Two-Dimensional Materials as Catalysts for Energy Conversion. Catalysis Letters, 2016, 146, 1917-1921.	1.4	58
43	Theoretical Investigations of the Electrochemical Reduction of CO on Single Metal Atoms Embedded in Graphene. ACS Central Science, 2017, 3, 1286-1293.	5.3	54
44	Tandem cathode for proton exchange membrane fuel cells. Physical Chemistry Chemical Physics, 2013, 15, 9326.	1.3	53
45	Catalytic hydrogenation of C and Cî€O in unsaturated fatty acid methyl esters. Catalysis Science and Technology, 2014, 4, 2427-2444.	2.1	52
46	Single Metal Atoms Anchored in Twoâ€Dimensional Materials: Bifunctional Catalysts for Fuel Cell Applications. ChemCatChem, 2018, 10, 3034-3039.	1.8	50
47	Ultrathin Cobalt Oxide Overlayer Promotes Catalytic Activity of Cobalt Nitride for the Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2018, 122, 4783-4791.	1.5	46
48	First principles investigation of zinc-anode dissolution in zinc–air batteries. Physical Chemistry Chemical Physics, 2013, 15, 6416.	1.3	44
49	Nature of Lone-Pair–Surface Bonds and Their Scaling Relations. Inorganic Chemistry, 2018, 57, 7222-7238.	1.9	43
50	Improved Oxygen Reduction Reaction Activity of Nanostructured CoS ₂ through Electrochemical Tuning. ACS Applied Energy Materials, 2019, 2, 8605-8614.	2.5	42
51	Copper Silver Thin Films with Metastable Miscibility for Oxygen Reduction Electrocatalysis in Alkaline Electrolytes. ACS Applied Energy Materials, 2018, 1, 1990-1999.	2.5	40
52	Structural and Energetic Trends of Ethylene Hydrogenation over Transition Metal Surfaces. Journal of Physical Chemistry C, 2016, 120, 995-1003.	1.5	39
53	H ₂ production through electro-oxidation of SO ₂ : identifying the fundamental limitations. Physical Chemistry Chemical Physics, 2014, 16, 9572-9579.	1.3	36
54	Circumventing Scaling Relations in Oxygen Electrochemistry Using Metal–Organic Frameworks. Journal of Physical Chemistry Letters, 2020, 11, 10029-10036.	2.1	32

#	Article	IF	CITATIONS
55	Rational design of carbon nitride for remarkable photocatalytic H2O2 production. Chem Catalysis, 2022, 2, 1720-1733.	2.9	31
56	In Situ X-Ray Absorption Spectroscopy Disentangles the Roles of Copper and Silver in a Bimetallic Catalyst for the Oxygen Reduction Reaction. Chemistry of Materials, 2020, 32, 1819-1827.	3.2	30
57	Noble metal supported hexagonal boron nitride for the oxygen reduction reaction: a DFT study. Nanoscale Advances, 2019, 1, 132-139.	2.2	29
58	Highâ€Throughput Electron Diffraction Reveals a Hidden Novel Metal–Organic Framework for Electrocatalysis. Angewandte Chemie - International Edition, 2021, 60, 11391-11397.	7.2	29
59	Ternary cobalt–iron sulfide as a robust electrocatalyst for water oxidation: A dual effect from surface evolution and metal doping. Applied Surface Science, 2021, 542, 148681.	3.1	28
60	Electron affinity and redox potential of tetrafluoro-p-benzoquinone: A theoretical study. Journal of Fluorine Chemistry, 2008, 129, 222-225.	0.9	24
61	Prediction of Stable and Active (Oxy-Hydro) Oxide Nanoislands on Noble-Metal Supports for Electrochemical Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2019, 11, 2006-2013.	4.0	24
62	Development of Fukui Function Based Descriptors for a Machine Learning Study of CO2 Reduction. Journal of Physical Chemistry C, 2020, 124, 10079-10084.	1.5	24
63	Highâ€Performance Zincâ€Air Batteries Based on Bifunctional Hierarchically Porous Nitrogenâ€Đoped Carbon. Small, 2022, 18, e2105928.	5.2	23
64	Calculation of two-electron reduction potentials for some quinone derivatives in aqueous solution using MÃ,ller–Plesset perturbation theory. Computational and Theoretical Chemistry, 2006, 759, 245-247.	1.5	21
65	Exploring Scaling Relations for Chemisorption Energies on Transitionâ€Metalâ€Exchanged Zeolites ZSMâ€22 and ZSMâ€5. ChemCatChem, 2016, 8, 767-772.	1.8	18
66	Application of Density Functional Theory for evaluation of standard two-electron reduction potentials in some quinone derivatives. Computational and Theoretical Chemistry, 2008, 870, 10-14.	1.5	16
67	An insight into microscopic properties of aprotic ionic liquids: A DFT study. Computational and Theoretical Chemistry, 2010, 955, 47-52.	1.5	16
68	Elaborating Nitrogen and Oxygen Dopants Configurations within Graphene Electrocatalysts for Two-Electron Oxygen Reduction. , 2022, 4, 320-328.		15
69	SnO ₂ -supported single metal atoms: a bifunctional catalyst for the electrochemical synthesis of H ₂ O ₂ . Journal of Materials Chemistry A, 2022, 10, 6115-6121.	5.2	14
70	Activity and Selectivity for O ₂ Reduction to H ₂ O ₂ on Transition Metal Surfaces. ECS Transactions, 2013, 58, 53-62.	0.3	13
71	Two-Dimensional Metal–Organic Frameworks with Unique Oriented Layers for Oxygen Reduction Reaction: Tailoring the Activity through Exposed Crystal Facets. CCS Chemistry, 2022, 4, 1633-1642.	4.6	13
72	Trends in Adsorption Energies of the Oxygenated Species on Single Platinum Atom Embedded in Carbon Nanotubes. Catalysis Letters, 2017, 147, 2689-2696.	1.4	10

#	Article	IF	CITATIONS
73	Designing Carbon-Based Materials for Efficient Electrochemical Reduction of CO ₂ . Industrial & Engineering Chemistry Research, 2019, 58, 879-885.	1.8	10
74	Effect of Adventitious Carbon on Pit Formation of Monolayer MoS 2. Advanced Materials, 2020, 32, 2003020.	11.1	9
75	Heteroatom-Doped Transition Metal Nitrides for CO Electrochemical Reduction: A Density Functional Theory Screening Study. Journal of Physical Chemistry C, 2020, 124, 26344-26351.	1.5	8
76	Exploring the Effect of Gold Support on the Oxygen Reduction Reaction Activity of Metal Porphycenes. ChemCatChem, 2018, 10, 5505-5510.	1.8	6
77	The role of Pt in α-MoC on the water-gas shift reaction at low temperatures. Joule, 2021, 5, 521-523.	11.7	6
78	Highâ€Throughput Electron Diffraction Reveals a Hidden Novel Metal–Organic Framework for Electrocatalysis. Angewandte Chemie, 2021, 133, 11492-11498.	1.6	6
79	Effect of doping TiO ₂ with Mn for electrocatalytic oxidation in acid and alkaline electrolytes. Energy Advances, 2022, 1, 357-366.	1.4	4
80	Enhancing Oxygen Reduction Reaction Activity Using Single Atom Catalyst Supported on Tantalum Pentoxide. ChemCatChem, 0, , .	1.8	1
81	Pit Formation Mechanism of Monolayer MoS2 By Thermal Oxidation. ECS Meeting Abstracts, 2020, MA2020-02, 3887-3887.	0.0	Ο
82	Cuâ€doped Ba _{0.5} Sr _{0.5} FeO _{3â€Î′} for electrochemical synthesis of hydrogen peroxide via a 2â€electron oxygen reduction reaction ¹ . Electrochemical Science Advances, 2023, 3, .	1.2	0