Eli A Stahl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2965680/publications.pdf

Version: 2024-02-01

72 papers 22,079 citations

45 h-index 76900 74 g-index

94 all docs 94
docs citations

94 times ranked 27010 citing authors

#	Article	IF	CITATIONS
1	Partitioning heritability by functional annotation using genome-wide association summary statistics. Nature Genetics, 2015, 47, 1228-1235.	21.4	2,045
2	Genome-wide association analysis identifies 13 new risk loci for schizophrenia. Nature Genetics, 2013, 45, 1150-1159.	21.4	1,395
3	Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection. Nature Genetics, 2018, 50, 381-389.	21.4	1,332
4	A polygenic burden of rare disruptive mutations in schizophrenia. Nature, 2014, 506, 185-190.	27.8	1,305
5	Genome-wide association study identifies 30 loci associated with bipolar disorder. Nature Genetics, 2019, 51, 793-803.	21.4	1,191
6	Modeling Linkage Disequilibrium Increases Accuracy of Polygenic Risk Scores. American Journal of Human Genetics, 2015, 97, 576-592.	6.2	1,098
7	Analysis of shared heritability in common disorders of the brain. Science, 2018, 360, .	12.6	1,085
8	Gene expression elucidates functional impact of polygenic risk for schizophrenia. Nature Neuroscience, 2016, 19, 1442-1453.	14.8	952
9	Genomic Relationships, Novel Loci, and Pleiotropic Mechanisms across Eight Psychiatric Disorders. Cell, 2019, 179, 1469-1482.e11.	28.9	935
10	Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature, 2022, 604, 502-508.	27.8	929
11	Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects. Nature Genetics, 2017, 49, 27-35.	21.4	838
12	Exploring the phenotypic consequences of tissue specific gene expression variation inferred from GWAS summary statistics. Nature Communications, 2018, 9, 1825.	12.8	748
13	Genetic analyses of diverse populations improves discovery for complex traits. Nature, 2019, 570, 514-518.	27.8	679
14	Genome-wide association study of more than 40,000 bipolar disorder cases provides new insights into the underlying biology. Nature Genetics, 2021, 53, 817-829.	21.4	629
15	Genomic Dissection of Bipolar Disorder and Schizophrenia, Including 28 Subphenotypes. Cell, 2018, 173, 1705-1715.e16.	28.9	623
16	Partitioning Heritability of Regulatory and Cell-Type-Specific Variants across 11 Common Diseases. American Journal of Human Genetics, 2014, 95, 535-552.	6.2	569
17	Genome-wide Association Studies in Ancestrally Diverse Populations: Opportunities, Methods, Pitfalls, and Recommendations. Cell, 2019, 179, 589-603.	28.9	428
18	Increased burden of ultra-rare protein-altering variants among 4,877 individuals with schizophrenia. Nature Neuroscience, 2016, 19, 1433-1441.	14.8	427

#	Article	IF	CITATIONS
19	Hyperuricemia, Acute and Chronic Kidney Disease, Hypertension, and Cardiovascular Disease: Report of a Scientific Workshop Organized by the National Kidney Foundation. American Journal of Kidney Diseases, 2018, 71, 851-865.	1.9	362
20	Rare coding variants in ten genes confer substantial risk for schizophrenia. Nature, 2022, 604, 509-516.	27.8	326
21	Meta-Analysis of Genome-Wide Association Studies in Celiac Disease and Rheumatoid Arthritis Identifies Fourteen Non-HLA Shared Loci. PLoS Genetics, 2011, 7, e1002004.	3.5	307
22	A Role for Noncoding Variation in Schizophrenia. Cell Reports, 2014, 9, 1417-1429.	6.4	225
23	Systematic Evaluation of Pleiotropy Identifies 6 Further Loci Associated WithÂCoronary ArteryÂDisease. Journal of the American College of Cardiology, 2017, 69, 823-836.	2.8	214
24	Whole-Exome Sequencing Identifies Rare and Low-Frequency Coding Variants Associated with LDL Cholesterol. American Journal of Human Genetics, 2014, 94, 233-245.	6.2	193
25	An update on the genetics of hyperuricaemia and gout. Nature Reviews Rheumatology, 2018, 14, 341-353.	8.0	186
26	GWAS of Suicide Attempt in Psychiatric Disorders and Association With Major Depression Polygenic Risk Scores. American Journal of Psychiatry, 2019, 176, 651-660.	7. 2	186
27	Synergistic effects of common schizophrenia risk variants. Nature Genetics, 2019, 51, 1475-1485.	21.4	184
28	Penetrance and Pleiotropy of Polygenic Risk Scores for Schizophrenia in 106,160 Patients Across Four Health Care Systems. American Journal of Psychiatry, 2019, 176, 846-855.	7.2	168
29	Gene expression imputation across multiple brain regions provides insights into schizophrenia risk. Nature Genetics, 2019, 51, 659-674.	21.4	154
30	Transcriptional signatures of schizophrenia in hiPSC-derived NPCs and neurons are concordant with post-mortem adult brains. Nature Communications, 2017, 8, 2225.	12.8	143
31	The Genetics of the Mood Disorder Spectrum: Genome-wide Association Analyses of More Than 185,000 Cases and 439,000 Controls. Biological Psychiatry, 2020, 88, 169-184.	1.3	137
32	Improving genetic prediction by leveraging genetic correlations among human diseases and traits. Nature Communications, 2018, 9, 989.	12.8	136
33	Landscape of Conditional eQTL in Dorsolateral Prefrontal Cortex and Co-localization with Schizophrenia GWAS. American Journal of Human Genetics, 2018, 102, 1169-1184.	6.2	128
34	TYK2 Protein-Coding Variants Protect against Rheumatoid Arthritis and Autoimmunity, with No Evidence of Major Pleiotropic Effects on Non-Autoimmune Complex Traits. PLoS ONE, 2015, 10, e0122271.	2.5	120
35	Quantifying Missing Heritability at Known GWAS Loci. PLoS Genetics, 2013, 9, e1003993.	3.5	115
36	Exome Sequencing of Familial Bipolar Disorder. JAMA Psychiatry, 2016, 73, 590.	11.0	97

#	Article	IF	CITATIONS
37	Genome-wide association study implicates CHRNA2 in cannabis use disorder. Nature Neuroscience, 2019, 22, 1066-1074.	14.8	94
38	The Genetic Architecture of Depression in Individuals of East Asian Ancestry. JAMA Psychiatry, 2021, 78, 1258.	11.0	88
39	Integrated Bayesian analysis of rare exonic variants to identify risk genes for schizophrenia and neurodevelopmental disorders. Genome Medicine, 2017, 9, 114.	8.2	86
40	Pleiotropic Meta-Analysis of Cognition, Education, and Schizophrenia Differentiates Roles of Early Neurodevelopmental and Adult Synaptic Pathways. American Journal of Human Genetics, 2019, 105, 334-350.	6.2	86
41	Contributions of common genetic variants to risk of schizophrenia among individuals of African and Latino ancestry. Molecular Psychiatry, 2020, 25, 2455-2467.	7.9	82
42	Crowdsourced assessment of common genetic contribution to predicting anti-TNF treatment response in rheumatoid arthritis. Nature Communications, 2016, 7, 12460.	12.8	73
43	Disproportionate Contributions of Select Genomic Compartments and Cell Types to Genetic Risk for Coronary Artery Disease. PLoS Genetics, 2015, 11, e1005622.	3.5	70
44	Exome sequencing in bipolar disorder identifies AKAP11 as a risk gene shared with schizophrenia. Nature Genetics, 2022, 54, 541-547.	21.4	65
45	Global landscape and genetic regulation of RNA editing in cortical samples from individuals with schizophrenia. Nature Neuroscience, 2019, 22, 1402-1412.	14.8	63
46	A method to decipher pleiotropy by detecting underlying heterogeneity driven by hidden subgroups applied to autoimmune and neuropsychiatric diseases. Nature Genetics, 2016, 48, 803-810.	21.4	62
47	Sex-Dependent Shared and Nonshared Genetic Architecture Across Mood and Psychotic Disorders. Biological Psychiatry, 2022, 91, 102-117.	1.3	61
48	Conditional GWAS analysis to identify disorder-specific SNPs for psychiatric disorders. Molecular Psychiatry, 2021, 26, 2070-2081.	7.9	48
49	Populationâ€Specific Resequencing Associates the ATPâ€Binding Cassette Subfamily C Member 4 Gene With Gout in New Zealand MÄori and Pacific Men. Arthritis and Rheumatology, 2017, 69, 1461-1469.	5.6	46
50	Contribution of Rare Copy Number Variants toÂBipolar Disorder Risk Is Limited to Schizoaffective Cases. Biological Psychiatry, 2019, 86, 110-119.	1.3	45
51	Analysis of Genetically Regulated Gene Expression Identifies a Prefrontal PTSD Gene, SNRNP35, Specific to Military Cohorts. Cell Reports, 2020, 31, 107716.	6.4	44
52	Dissecting clinical heterogeneity of bipolar disorder using multiple polygenic risk scores. Translational Psychiatry, 2020, 10, 314.	4.8	42
53	Collagenous Colitis Is Associated With HLA Signature and Shares Genetic Risks With Other Immune-Mediated Diseases. Gastroenterology, 2020, 159, 549-561.e8.	1.3	31
54	The Toll-Like Receptor 4 (TLR4) Variant rs2149356 and Risk of Gout in European and Polynesian Sample Sets. PLoS ONE, 2016, 11, e0147939.	2.5	31

#	Article	IF	Citations
55	Mitochondrial genetic variation and gout in MÄori and Pacific people living in Aotearoa New Zealand. Annals of the Rheumatic Diseases, 2018, 77, 571-578.	0.9	30
56	Fine-mapping of lipid regions in global populations discovers ethnic-specific signals and refines previously identified lipid loci. Human Molecular Genetics, 2016, 25, 5500-5512.	2.9	29
57	Genome-wide non-HLA donor-recipient genetic differences influence renal allograft survival via early allograft fibrosis. Kidney International, 2020, 98, 758-768.	5. 2	25
58	Genetic validation of bipolar disorder identified by automated phenotyping using electronic health records. Translational Psychiatry, 2018, 8, 86.	4.8	24
59	Characterisation of age and polarity at onset in bipolar disorder. British Journal of Psychiatry, 2021, 219, 659-669.	2.8	20
60	Shared activity patterns arising at genetic susceptibility loci reveal underlying genomic and cellular architecture of human disease. PLoS Computational Biology, 2018, 14, e1005934.	3.2	17
61	Genetic risk for schizophrenia and autism, social impairment and developmental pathways to psychosis. Translational Psychiatry, 2018, 8, 204.	4.8	16
62	Investigating rare pathogenic/likely pathogenic exonic variation in bipolar disorder. Molecular Psychiatry, 2021, 26, 5239-5250.	7.9	15
63	Rare proteinâ€coding variants implicate genes involved in risk of suicide death. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2021, 186, 508-520.	1.7	14
64	Population-scale analysis of common and rare genetic variation associated with hearing loss in adults. Communications Biology, 2022, 5, .	4.4	12
65	Characterization of Single Gene Copy Number Variants in Schizophrenia. Biological Psychiatry, 2020, 87, 736-744.	1.3	10
66	mTADA is a framework for identifying risk genes from de novo mutations in multiple traits. Nature Communications, 2020, 11, 2929.	12.8	10
67	Heritability estimates of individual psychological distress symptoms from genetic variation. Journal of Affective Disorders, 2019, 252, 413-420.	4.1	9
68	Brief Report: The Role of Rare Protein oding Variants in Anti–Tumor Necrosis Factor Treatment Response in Rheumatoid Arthritis. Arthritis and Rheumatology, 2017, 69, 735-741.	5.6	8
69	Impact of schizophrenia GWAS loci converge onto distinct pathways in cortical interneurons vs glutamatergic neurons during development. Molecular Psychiatry, 2022, 27, 4218-4233.	7.9	6
70	Predicted gene expression in ancestrally diverse populations leads to discovery of susceptibility loci for lifestyle and cardiometabolic traits. American Journal of Human Genetics, 2022, 109, 669-679.	6.2	5
71	A loop-counting method for covariate-corrected low-rank biclustering of gene-expression and genome-wide association study data. PLoS Computational Biology, 2018, 14, e1006105.	3.2	3
72	The genetic architecture of bipolar disorder: Entering the road of discoveries., 2020,, 215-225.		0