Juan Martin Carpio Valadez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2965305/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A novel model for optimization of Intelligent Multi-User Visual Comfort System based on soft-computing algorithms. Journal of Ambient Intelligence and Smart Environments, 2021, 13, 95-116.	0.8	5
2	A Methodology to Determine the Subset of Heuristics for Hyperheuristics through Metalearning for Solving Graph Coloring and Capacitated Vehicle Routing Problems. Complexity, 2021, 2021, 1-22.	0.9	3
3	A Novel Set of Moment Invariants for Pattern Recognition Applications Based on Jacobi Polynomials. Lecture Notes in Computer Science, 2020, , 139-148.	1.0	0
4	Symmetric-Approximation Energy-Based Estimation of Distribution (SEED): A Continuous Optimization Algorithm. IEEE Access, 2019, 7, 154859-154871.	2.6	4
5	Parameter optimization for the smoothed-particle hydrodynamics method by means of evolutionary metaheuristics. Computer Physics Communications, 2019, 243, 30-40.	3.0	7
6	Evolutionary Spiking Neural Networks for Solving Supervised Classification Problems. Computational Intelligence and Neuroscience, 2019, 2019, 1-13.	1.1	14
7	Optimal Hyper-Parameter Tuning of SVM Classifiers With Application to Medical Diagnosis. IEEE Access, 2018, 6, 7164-7176.	2.6	59
8	Translation of Natural Language Queries to SQL that Involve Aggregate Functions, Grouping and Subqueries for a Natural Language Interface to Databases. Studies in Computational Intelligence, 2018, , 431-448.	0.7	1
9	Partially-Connected Artificial Neural Networks Developed by Grammatical Evolution for Pattern Recognition Problems. Studies in Computational Intelligence, 2018, , 99-112.	0.7	4
10	Bio-inspired Metaheuristics for Hyper-parameter Tuning of Support Vector Machine Classifiers. Studies in Computational Intelligence, 2018, , 115-130.	0.7	4
11	Optimization of the Parameters of Smoothed Particle Hydrodynamics Method, Using Evolutionary Algorithms. Studies in Computational Intelligence, 2018, , 153-167.	0.7	2
12	Evolutionary Design of Problem-Adapted Image Descriptors for Texture Classification. IEEE Access, 2018, 6, 40450-40462.	2.6	5
13	A novel formulation of orthogonal polynomial kernel functions for SVM classifiers: The Gegenbauer family. Pattern Recognition, 2018, 84, 211-225.	5.1	57
14	Generating Bin Packing Heuristic Through Grammatical Evolution Based on Bee Swarm Optimization. Studies in Computational Intelligence, 2017, , 655-671.	0.7	2
15	Iterated VND Versus Hyper-heuristics: Effective and General Approaches to Course Timetabling. Studies in Computational Intelligence, 2017, , 687-700.	0.7	3
16	Hyper-Parameter Tuning for Support Vector Machines by Estimation of Distribution Algorithms. Studies in Computational Intelligence, 2017, , 787-800.	0.7	22
17	Increase Methodology of Design of Course Timetabling Problem for Students, Classrooms, and Teachers. Studies in Computational Intelligence, 2017, , 713-728.	0.7	4
18	Comparing Grammatical Evolution's Mapping Processes on Feature Generation for Pattern Recognition Problems. Studies in Computational Intelligence, 2017. 775-785	0.7	1

#	Article	IF	CITATIONS
19	Integer Linear Programming Formulation and Exact Algorithm for Computing Pathwidth. Studies in Computational Intelligence, 2017, , 673-686.	0.7	3
20	Design of Spiking Central Pattern Generators for Multiple Locomotion Gaits in Hexapod Robots by Christiansen Grammar Evolution. Frontiers in Neurorobotics, 2016, 10, 6.	1.6	19
21	A firefly algorithm for modular granular neural networks optimization applied to iris recognition. , 2016, , .		4
22	Iterated local search using an add and delete hyper-heuristic for university course timetabling. Applied Soft Computing Journal, 2016, 40, 581-593.	4.1	48
23	Parallel Meta-heuristic Approaches to the Course Timetabling Problem. Studies in Computational Intelligence, 2015, , 391-417.	0.7	2
24	A heterogeneous cellular processing algorithm for minimizing the power consumption in wireless communications systems. Computational Optimization and Applications, 2015, 62, 787-814.	0.9	5
25	Comparative Study on Constructive Heuristics for the Vertex Separation Problem. Studies in Computational Intelligence, 2015, , 465-474.	0.7	4
26	Comparing Evolutionary Strategy Algorithms for Training Spiking Neural Networks. Research in Computing Science, 2015, 96, 9-17.	0.1	3
27	Monitoreo de emociones aplicadas a terapias basadas en juegos y lógica difusa para adultos mayores. Research in Computing Science, 2015, 92, 81-90.	0.1	1
28	Improving the Bin Packing Heuristic through Grammatical Evolution Based on Swarm Intelligence. Mathematical Problems in Engineering, 2014, 2014, 1-12.	0.6	6
29	Evolvability metrics in adaptive operator selection. , 2014, , .		13
30	Developing Architectures of Spiking Neural Networks by Using Grammatical Evolution Based on Evolutionary Strategy. Lecture Notes in Computer Science, 2014, , 71-80.	1.0	2
31	Effective learning hyper-heuristics for the course timetabling problem. European Journal of Operational Research, 2014, 238, 77-86.	3.5	69
32	Comparing Metaheuristic Algorithms on the Training Process of Spiking Neural Networks. Studies in Computational Intelligence, 2014, , 391-403.	0.7	5
33	Descriptores basados en combinaciones lineales de polinomios de Jacobi aplicados en la caracterizaciÃ ³ n de melanoma, comparados estadÂsticamente con los momentos de Hu. Research in Computing Science, 2014, 74, 143-156.	0.1	0
34	Comparison of Metaheuristic Algorithms with a Methodology of Design for the Evaluation of Hard Constraints over the Course Timetabling Problem. Studies in Computational Intelligence, 2013, , 289-302.	0.7	7
35	Evolving and reusing Bin Packing heuristic through Grammatical Differential Evolution. , 2013, , .		2
36	Evolving Bin Packing Heuristic Using Micro-Differential Evolution with Indirect Representation. Studies in Computational Intelligence, 2013, , 349-359.	0.7	13

#	Article	IF	CITATIONS
37	Experimental Study of a New Algorithm-Design-Framework Based on Cellular Computing. Studies in Computational Intelligence, 2013, , 517-532.	0.7	2
38	Homogeneous Population Solving the Minimal Perturbation Problem in Dynamic Scheduling of Surgeries. Lecture Notes in Computer Science, 2013, , 473-484.	1.0	0
39	Comparison of PSO and DE for Training Neural Networks. , 2011, , .		6
40	A New Approach of Design for the Academic Timetabling Problem through Genetic Algorithms. , 2010, , .		2
41	One Criterion for the Selection of the Cardinality of Learning Set Used by the Associative Pattern Classifier. , 2010, , .		Ο
42	3D Object Reconstruction Using Structured Light and Neural Networks. , 2010, , .		2
43	Several Strategies to Improve the Performance of Hyperheuristics for Academic Timetabling Design Problem. , 2010, , .		1
44	A Comparation between Bee Swarm Optimization and Greedy Algorithm for the Knapsack Problem with Bee Reallocation. , 2010, , .		5
45	Application of the Bee Swarm Optimization BSO to the Knapsack Problem. Studies in Computational Intelligence, 2010, , 191-206.	0.7	8
46	Variable Length Number Chains Generation without Repetitions. Studies in Computational Intelligence, 2010, , 349-364.	0.7	4
47	Improving Iterated Local Search Solution for the Linear Ordering Problem with Cumulative Costs (LOPCC). Lecture Notes in Computer Science, 2010, , 183-192.	1.0	5
48	Academic Timetabling Design Using Hyper-Heuristics. Studies in Computational Intelligence, 2010, , 43-56.	0.7	0
49	Hybrid Algorithm to Data Clustering. Lecture Notes in Computer Science, 2009, , 678-685.	1.0	0
50	Encryption and decryption of images with chaotic map lattices. Chaos, 2006, 16, 033118.	1.0	126
51	Closed cartesian representation of the Zernike polynomials. Optics Communications, 1994, 110, 514-516.	1.0	7
52	Direct phase detection of lateral shear interferograms using a phase-locked loop. Optics Communications, 1994, 108, 225-229.	1.0	1
53	Wavefront fitting with discrete orthogonal polynomials in a unit radius circle. Optical Engineering, 1990, 29, 672.	0.5	91
54	Automatic fringe detection algorithm used for moire deflectometry. Applied Optics, 1990, 29, 3266.	2.1	31

#	Article	IF	CITATIONS
55	Improved training of deep convolutional networks via minimum-variance regularized adaptive sampling. Soft Computing, 0, , .	2.1	0