Philip Stier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2965185/publications.pdf Version: 2024-02-01

DHILID STIED

#	Article	IF	CITATIONS
1	Analysis and quantification of the diversities of aerosol life cycles within AeroCom. Atmospheric Chemistry and Physics, 2006, 6, 1777-1813.	4.9	1,202
2	The aerosol-climate model ECHAM5-HAM. Atmospheric Chemistry and Physics, 2005, 5, 1125-1156.	4.9	990
3	Global Air Pollution Crossroads over the Mediterranean. Science, 2002, 298, 794-799.	12.6	920
4	Global dust model intercomparison in AeroCom phase I. Atmospheric Chemistry and Physics, 2011, 11, 7781-7816.	4.9	839
5	Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations. Atmospheric Chemistry and Physics, 2013, 13, 1853-1877.	4.9	779
6	An AeroCom initial assessment – optical properties in aerosol component modules of global models. Atmospheric Chemistry and Physics, 2006, 6, 1815-1834.	4.9	697
7	Radiative forcing by aerosols as derived from the AeroCom present-day and pre-industrial simulations. Atmospheric Chemistry and Physics, 2006, 6, 5225-5246.	4.9	633
8	Evaluation of black carbon estimations in global aerosol models. Atmospheric Chemistry and Physics, 2009, 9, 9001-9026.	4.9	585
9	Bounding Global Aerosol Radiative Forcing of Climate Change. Reviews of Geophysics, 2020, 58, e2019RG000660.	23.0	424
10	Aerosol indirect effects – general circulation model intercomparison and evaluation with satellite data. Atmospheric Chemistry and Physics, 2009, 9, 8697-8717.	4.9	418
11	Cloud microphysics and aerosol indirect effects in the global climate model ECHAM5-HAM. Atmospheric Chemistry and Physics, 2007, 7, 3425-3446.	4.9	385
12	M7: An efficient size-resolved aerosol microphysics module for large-scale aerosol transport models. Journal of Geophysical Research, 2004, 109, n/a-n/a.	3.3	372
13	The global aerosol-climate model ECHAM-HAM, version 2: sensitivity to improvements in process representations. Atmospheric Chemistry and Physics, 2012, 12, 8911-8949.	4.9	319
14	Coatings and their enhancement of black carbon light absorption in the tropical atmosphere. Journal of Geophysical Research, 2008, 113, .	3.3	266
15	Comparing clouds and their seasonal variations in 10 atmospheric general circulation models with satellite measurements. Journal of Geophysical Research, 2005, 110, .	3.3	250
16	Aerosol absorption and radiative forcing. Atmospheric Chemistry and Physics, 2007, 7, 5237-5261.	4.9	245
17	The effect of harmonized emissions on aerosol properties in global models – an AeroCom experiment. Atmospheric Chemistry and Physics, 2007, 7, 4489-4501.	4.9	228
18	Black carbon vertical profiles strongly affect its radiative forcing uncertainty. Atmospheric Chemistry and Physics, 2013, 13, 2423-2434.	4.9	223

#	Article	IF	CITATIONS
19	The magnitude and causes of uncertainty in global model simulations of cloud condensation nuclei. Atmospheric Chemistry and Physics, 2013, 13, 8879-8914.	4.9	211
20	MACâ€v1: A new global aerosol climatology for climate studies. Journal of Advances in Modeling Earth Systems, 2013, 5, 704-740.	3.8	198
21	Strong constraints on aerosol–cloud interactions from volcanic eruptions. Nature, 2017, 546, 485-491.	27.8	191
22	Aerosol nucleation and its role for clouds and Earth's radiative forcing in the aerosol-climate model ECHAM5-HAM. Atmospheric Chemistry and Physics, 2010, 10, 10733-10752.	4.9	190
23	Remote Sensing of Droplet Number Concentration in Warm Clouds: A Review of the Current State of Knowledge and Perspectives. Reviews of Geophysics, 2018, 56, 409-453.	23.0	185
24	Description and evaluation of GMXe: a new aerosol submodel for global simulations (v1). Geoscientific Model Development, 2010, 3, 391-412.	3.6	178
25	Globalâ€scale black carbon profiles observed in the remote atmosphere and compared to models. Geophysical Research Letters, 2010, 37, .	4.0	172
26	Sources of uncertainties in modelling black carbon at the global scale. Atmospheric Chemistry and Physics, 2010, 10, 2595-2611.	4.9	171
27	Application of the CALIOP layer product to evaluate the vertical distribution of aerosols estimated by global models: AeroCom phase I results. Journal of Geophysical Research, 2012, 117, .	3.3	170
28	Interpreting the cloud cover – aerosol optical depth relationship found in satellite data using a general circulation model. Atmospheric Chemistry and Physics, 2010, 10, 6129-6135.	4.9	169
29	DMS cycle in the marine ocean-atmosphere system – a global model study. Biogeosciences, 2006, 3, 29-51.	3.3	162
30	Modelled black carbon radiative forcing and atmospheric lifetime in AeroCom Phase II constrained by aircraft observations. Atmospheric Chemistry and Physics, 2014, 14, 12465-12477.	4.9	157
31	Intercomparison and evaluation of global aerosol microphysical properties among AeroCom models of a range of complexity. Atmospheric Chemistry and Physics, 2014, 14, 4679-4713.	4.9	148
32	Host model uncertainties in aerosol radiative forcing estimates: results from the AeroCom Prescribed intercomparison study. Atmospheric Chemistry and Physics, 2013, 13, 3245-3270.	4.9	143
33	Aerosol size-dependent below-cloud scavenging by rain and snow in the ECHAM5-HAM. Atmospheric Chemistry and Physics, 2009, 9, 4653-4675.	4.9	129
34	Global chemical weather forecasts for field campaign planning: predictions and observations of large-scale features during MINOS, CONTRACE, and INDOEX. Atmospheric Chemistry and Physics, 2003, 3, 267-289.	4.9	128
35	Globalâ€scale seasonally resolved black carbon vertical profiles over the Pacific. Geophysical Research Letters, 2013, 40, 5542-5547.	4.0	124
36	Challenges in constraining anthropogenic aerosol effects on cloud radiative forcing using present-day spatiotemporal variability. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5804-5811.	7.1	120

#	Article	IF	CITATIONS
37	Understanding Rapid Adjustments to Diverse Forcing Agents. Geophysical Research Letters, 2018, 45, 12023-12031.	4.0	113
38	Influences of in-cloud aerosol scavenging parameterizations on aerosol concentrations and wet deposition in ECHAM5-HAM. Atmospheric Chemistry and Physics, 2010, 10, 1511-1543.	4.9	109
39	Will a perfect model agree with perfect observations? The impact of spatial sampling. Atmospheric Chemistry and Physics, 2016, 16, 6335-6353.	4.9	108
40	Comprehensively accounting for the effect of giant CCN in cloud activation parameterizations. Atmospheric Chemistry and Physics, 2010, 10, 2467-2473.	4.9	106
41	Limitations of passive remote sensing to constrain global cloud condensation nuclei. Atmospheric Chemistry and Physics, 2016, 16, 6595-6607.	4.9	103
42	The global aerosol–climate model ECHAM6.3–HAM2.3 – Part 1: Aerosol evaluation. Geoscientific Model Development, 2019, 12, 1643-1677.	3.6	103
43	Impact of nonabsorbing anthropogenic aerosols on clear-sky atmospheric absorption. Journal of Geophysical Research, 2006, 111, .	3.3	100
44	An overview of the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) project: aerosol–cloud–radiation interactions in the southeast Atlantic basin. Atmospheric Chemistry and Physics, 2021, 21, 1507-1563.	4.9	97
45	Impact of carbonaceous aerosol emissions on regional climate change. Climate Dynamics, 2006, 27, 553-571.	3.8	94
46	Intercomparison of shortwave radiative transfer schemes in global aerosol modeling: results from the AeroCom Radiative Transfer Experiment. Atmospheric Chemistry and Physics, 2013, 13, 2347-2379.	4.9	94
47	A critical look at spatial scale choices in satellite-based aerosol indirect effect studies. Atmospheric Chemistry and Physics, 2010, 10, 11459-11470.	4.9	92
48	An AeroCom assessment of black carbon in Arctic snow and sea ice. Atmospheric Chemistry and Physics, 2014, 14, 2399-2417.	4.9	86
49	On the spatio-temporal representativeness of observations. Atmospheric Chemistry and Physics, 2017, 17, 9761-9780.	4.9	84
50	Biomass burning aerosols in most climate models are too absorbing. Nature Communications, 2021, 12, 277.	12.8	84
51	Description and evaluation of aerosol in UKESM1 and HadGEM3-GC3.1 CMIP6 historical simulations. Geoscientific Model Development, 2020, 13, 6383-6423.	3.6	83
52	What controls the vertical distribution of aerosol? Relationships between process sensitivity in HadGEM3–UKCA and inter-model variation from AeroCom Phase II. Atmospheric Chemistry and Physics, 2016, 16, 2221-2241.	4.9	82
53	Satellite observations of cloud regime development: the role of aerosol processes. Atmospheric Chemistry and Physics, 2014, 14, 1141-1158.	4.9	81
54	Evaluation of the aerosol vertical distribution in global aerosol models through comparison against CALIOP measurements: AeroCom phase II results. Journal of Geophysical Research D: Atmospheres, 2016, 121, 7254-7283.	3.3	80

#	Article	IF	CITATIONS
55	Constraints on aerosol processes in climate models from vertically-resolved aircraft observations of black carbon. Atmospheric Chemistry and Physics, 2013, 13, 5969-5986.	4.9	79
56	Response of dimethylsulfide (DMS) in the ocean and atmosphere to global warming. Journal of Geophysical Research, 2007, 112, .	3.3	78
57	Regimeâ€based analysis of aerosolâ€cloud interactions. Geophysical Research Letters, 2012, 39, .	4.0	77
58	Investigating relationships between aerosol optical depth and cloud fraction using satellite, aerosol reanalysis and general circulation model data. Atmospheric Chemistry and Physics, 2013, 13, 3177-3184.	4.9	77
59	Constraining the instantaneous aerosol influence on cloud albedo. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4899-4904.	7.1	77
60	The importance of vertical velocity variability for estimates of the indirect aerosol effects. Atmospheric Chemistry and Physics, 2014, 14, 6369-6393.	4.9	73
61	The evolution of the global aerosol system in a transient climate simulation from 1860 to 2100. Atmospheric Chemistry and Physics, 2006, 6, 3059-3076.	4.9	72
62	Trace gas and aerosol interactions in the fully coupled model of aerosolâ€chemistryâ€climate ECHAM5â€HAMMOZ: 1. Model description and insights from the spring 2001 TRACEâ€P experiment. Journal of Geophysical Research, 2008, 113, .	3.3	72
63	The importance of temporal collocation for the evaluation of aerosol models with observations. Atmospheric Chemistry and Physics, 2016, 16, 1065-1079.	4.9	70
64	Aerosols enhance cloud lifetime and brightness along the stratus-to-cumulus transition. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 17591-17598.	7.1	69
65	Emission-Induced Nonlinearities in the Global Aerosol System: Results from the ECHAM5-HAM Aerosol-Climate Model. Journal of Climate, 2006, 19, 3845-3862.	3.2	67
66	On the characteristics of aerosol indirect effect based on dynamic regimes in global climate models. Atmospheric Chemistry and Physics, 2016, 16, 2765-2783.	4.9	67
67	Evaluation of global simulations of aerosol particle and cloud condensation nuclei number, with implications for cloud droplet formation. Atmospheric Chemistry and Physics, 2019, 19, 8591-8617.	4.9	60
68	Aerosols at the poles: an AeroCom Phase II multi-model evaluation. Atmospheric Chemistry and Physics, 2017, 17, 12197-12218.	4.9	58
69	The CLoud–Aerosol–Radiation Interaction and Forcing: YearÂ2017 (CLARIFY-2017) measurement campaign. Atmospheric Chemistry and Physics, 2021, 21, 1049-1084.	4.9	57
70	Efficacy of Climate Forcings in PDRMIP Models. Journal of Geophysical Research D: Atmospheres, 2019, 124, 12824-12844.	3.3	55
71	The Global Aerosol Synthesis and Science Project (GASSP): Measurements and Modeling to Reduce Uncertainty. Bulletin of the American Meteorological Society, 2017, 98, 1857-1877.	3.3	52
72	SALSA2.0: The sectional aerosol module of the aerosol–chemistry–climate model ECHAM6.3.0-HAM2.3-MOZ1.0. Geoscientific Model Development, 2018, 11, 3833-3863.	3.6	52

#	Article	IF	CITATIONS
73	The chemistry–climate model ECHAM6.3-HAM2.3-MOZ1.0. Geoscientific Model Development, 2018, 11, 1695-1723.	3.6	51
74	Constraining the Twomey effect from satellite observations: issues and perspectives. Atmospheric Chemistry and Physics, 2020, 20, 15079-15099.	4.9	49
75	Wet scavenging limits the detection of aerosol effects on precipitation. Atmospheric Chemistry and Physics, 2015, 15, 7557-7570.	4.9	46
76	Uncertainty from the choice of microphysics scheme in convection-permitting models significantly exceeds aerosol effects. Atmospheric Chemistry and Physics, 2017, 17, 12145-12175.	4.9	46
77	Quantifying the Effects of Horizontal Grid Length and Parameterized Convection on the Degree of Convective Organization Using a Metric of the Potential for Convective Interaction. Journals of the Atmospheric Sciences, 2018, 75, 425-450.	1.7	46
78	Cloud fraction mediates the aerosol optical depthâ€cloud top height relationship. Geophysical Research Letters, 2014, 41, 3622-3627.	4.0	45
79	The global aerosol–climate model ECHAM6.3–HAM2.3 – Part 2: Cloud evaluation, aerosol radiative forcing, and climate sensitivity. Geoscientific Model Development, 2019, 12, 3609-3639.	3.6	44
80	Opportunistic experiments to constrain aerosol effective radiative forcing. Atmospheric Chemistry and Physics, 2022, 22, 641-674.	4.9	44
81	Jury is still out on the radiative forcing by black carbon. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5092-3.	7.1	43
82	Aerosol distribution over Europe: a model evaluation study with detailed aerosol microphysics. Atmospheric Chemistry and Physics, 2008, 8, 1591-1607.	4.9	40
83	An AeroCom–AeroSat study: intercomparison of satellite AOD datasets for aerosol model evaluation. Atmospheric Chemistry and Physics, 2020, 20, 12431-12457.	4.9	40
84	Surprising similarities in model and observational aerosol radiative forcing estimates. Atmospheric Chemistry and Physics, 2020, 20, 613-623.	4.9	39
85	Trace gas and aerosol interactions in the fully coupled model of aerosolâ€chemistryâ€climate ECHAM5â€HAMMOZ: 2. Impact of heterogeneous chemistry on the global aerosol distributions. Journal of Geophysical Research, 2008, 113, .	3.3	38
86	Influence of future air pollution mitigation strategies on total aerosol radiative forcing. Atmospheric Chemistry and Physics, 2008, 8, 6405-6437.	4.9	38
87	Links between satellite-retrieved aerosol and precipitation. Atmospheric Chemistry and Physics, 2014, 14, 9677-9694.	4.9	37
88	Aerosol activation and cloud processing in the global aerosol-climate model ECHAM5-HAM. Atmospheric Chemistry and Physics, 2006, 6, 2389-2399.	4.9	36
89	Aerosol effects on deep convection: the propagation of aerosol perturbations through convective cloud microphysics. Atmospheric Chemistry and Physics, 2019, 19, 2601-2627.	4.9	36
90	Aerosol processing in mixedâ€phase clouds in ECHAM5â€HAM: Model description and comparison to observations. Journal of Geophysical Research, 2008, 113, .	3.3	33

#	Article	IF	CITATIONS
91	Community Intercomparison Suite (CIS) v1.4.0: a tool for intercomparing models and observations. Geoscientific Model Development, 2016, 9, 3093-3110.	3.6	33
92	Ensembles of Global Climate Model Variants Designed for the Quantification and Constraint of Uncertainty in Aerosols and Their Radiative Forcing. Journal of Advances in Modeling Earth Systems, 2019, 11, 3728-3754.	3.8	33
93	Anthropogenic aerosol forcing – insights from multiple estimates from aerosol-climate models with reduced complexity. Atmospheric Chemistry and Physics, 2019, 19, 6821-6841.	4.9	33
94	Reducing the aerosol forcing uncertainty using observational constraints on warm rain processes. Science Advances, 2020, 6, eaaz6433.	10.3	33
95	Impacts of Varying Concentrations of Cloud Condensation Nuclei on Deep Convective Cloud Updrafts—A Multimodel Assessment. Journals of the Atmospheric Sciences, 2021, 78, 1147-1172.	1.7	33
96	A microphysical parameterization for convective clouds in the ECHAM5 climate model: Single-column model results evaluated at the Oklahoma Atmospheric Radiation Measurement Program site. Journal of Geophysical Research, 2005, 110, .	3.3	32
97	Aerosol indirect effects from shipping emissions: sensitivity studies with the global aerosol-climate model ECHAM-HAM. Atmospheric Chemistry and Physics, 2012, 12, 5985-6007.	4.9	32
98	A pathway analysis of global aerosol processes. Atmospheric Chemistry and Physics, 2014, 14, 11657-11686.	4.9	32
99	Consistent simulation of bromine chemistry from the marine boundary layer to the stratosphere – Part 1: Model description, sea salt aerosols and pH. Atmospheric Chemistry and Physics, 2008, 8, 5899-5917.	4.9	30
100	tobac 1.2: towards a flexible framework for tracking and analysis of clouds in diverse datasets. Geoscientific Model Development, 2019, 12, 4551-4570.	3.6	30
101	Water vapour adjustments and responses differ between climate drivers. Atmospheric Chemistry and Physics, 2019, 19, 12887-12899.	4.9	29
102	AEROCOM and AEROSAT AAOD and SSA study – PartÂ1: Evaluation and intercomparison of satellite measurements. Atmospheric Chemistry and Physics, 2021, 21, 6895-6917.	4.9	27
103	Aerosol absorption in global models from AeroCom phase III. Atmospheric Chemistry and Physics, 2021, 21, 15929-15947.	4.9	27
104	Tropical and Boreal Forest – Atmosphere Interactions: A Review. Tellus, Series B: Chemical and Physical Meteorology, 2022, 74, 24.	1.6	27
105	The presentâ€day decadal solar cycle modulation of Earth's radiative forcing via charged H ₂ SO ₄ /H ₂ O aerosol nucleation. Geophysical Research Letters, 2012, 39, .	4.0	26
106	Quantifying the Importance of Rapid Adjustments for Global Precipitation Changes. Geophysical Research Letters, 2018, 45, 11399-11405.	4.0	26
107	In situ constraints on the vertical distribution of global aerosol. Atmospheric Chemistry and Physics, 2019, 19, 11765-11790.	4.9	24
108	Rainfallâ€∎erosol relationships explained by wet scavenging and humidity. Geophysical Research Letters, 2014, 41, 5678-5684.	4.0	22

#	Article	IF	CITATIONS
109	On the Limits of CALIOP for Constraining Modeled Free Tropospheric Aerosol. Geophysical Research Letters, 2018, 45, 9260-9266.	4.0	22
110	Analysis of the Atmospheric Water Budget for Elucidating the Spatial Scale of Precipitation Changes Under Climate Change. Geophysical Research Letters, 2019, 46, 10504-10511.	4.0	22
111	Dynamic subgrid heterogeneity of convective cloud in a global model: description and evaluation of the Convective Cloud Field Model (CCFM) in ECHAM6–HAM2. Atmospheric Chemistry and Physics, 2017, 17, 327-342.	4.9	21
112	Constraining Uncertainty in Aerosol Direct Forcing. Geophysical Research Letters, 2020, 47, e2020GL087141.	4.0	21
113	Effect of aerosol subgrid variability on aerosol optical depth and cloud condensation nuclei: implications for global aerosol modelling. Atmospheric Chemistry and Physics, 2016, 16, 13619-13639.	4.9	20
114	A multi-model assessment of the impact of sea spray geoengineering on cloud droplet number. Atmospheric Chemistry and Physics, 2012, 12, 11647-11663.	4.9	19
115	Processes limiting the emergence of detectable aerosol indirect effects on tropical warm clouds in global aerosol-climate model and satellite data. Tellus, Series B: Chemical and Physical Meteorology, 2022, 66, 24054.	1.6	19
116	The effect of extratropical cyclones on satellite-retrieved aerosol properties over ocean. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	18
117	Corrigendum to "Evaluation of black carbon estimations in global aerosol models" published in Atmos. Chem. Phys., 9, 9001-9026, 2009. Atmospheric Chemistry and Physics, 2010, 10, 79-81.	4.9	17
118	Scales of variability of black carbon plumes over the Pacific Ocean. Geophysical Research Letters, 2012, 39, .	4.0	17
119	Aerosol Forcing Masks and Delays the Formation of the North Atlantic Warming Hole by Three Decades. Geophysical Research Letters, 2020, 47, e2020GL090778.	4.0	17
120	Contrasting Response of Precipitation to Aerosol Perturbation in the Tropics and Extratropics Explained by Energy Budget Considerations. Geophysical Research Letters, 2019, 46, 7828-7837.	4.0	16
121	Corrigendum to "Description and evaluation of GMXe: a new aerosol submodel for global simulations (v1)" published in Geosci. Model Dev., 3, 391–412, 2010. Geoscientific Model Development, 2010, 3, 413-413.	3.6	15
122	How Well Can We Represent the Spectrum of Convective Clouds in a Climate Model? Comparisons between Internal Parameterization Variables and Radar Observations. Journals of the Atmospheric Sciences, 2018, 75, 1509-1524.	1.7	15
123	Assessment of black carbon radiative effects in climate models. Wiley Interdisciplinary Reviews: Climate Change, 2012, 3, 359-370.	8.1	13
124	Evaluating the diurnal cycle in cloud top temperature from SEVIRI. Atmospheric Chemistry and Physics, 2017, 17, 7035-7053.	4.9	13
125	Cloud adjustments dominate the overall negative aerosol radiative effects of biomass burning aerosols in UKESM1 climate model simulations over the south-eastern Atlantic. Atmospheric Chemistry and Physics, 2021, 21, 17-33.	4.9	13
126	The contribution of the strength and structure of extratropical cyclones to observed cloud–aerosol relationships. Atmospheric Chemistry and Physics, 2013, 13, 10689-10701.	4.9	12

#	Article	IF	CITATIONS
127	Inverse modelling of Köhler theory – Part 1: A response surface analysis of CCN spectra with respect to surface-active organic species. Atmospheric Chemistry and Physics, 2016, 16, 10941-10963.	4.9	12
128	Effects of aerosol in simulations of realistic shallow cumulus cloud fields in a large domain. Atmospheric Chemistry and Physics, 2019, 19, 13507-13517.	4.9	11
129	Atmospheric energy budget response to idealized aerosol perturbation in tropical cloud systems. Atmospheric Chemistry and Physics, 2020, 20, 4523-4544.	4.9	11
130	Anthropogenic Aerosols Modulated 20th entury Sahel Rainfall Variability Via Their Impacts on North Atlantic Sea Surface Temperature. Geophysical Research Letters, 2022, 49, .	4.0	11
131	Brightening of the global cloud field by nitric acid and the associated radiative forcing. Atmospheric Chemistry and Physics, 2012, 12, 7625-7633.	4.9	10
132	Constraint on precipitation response to climate change by combination of atmospheric energy and water budgets. Npj Climate and Atmospheric Science, 2020, 3, .	6.8	10
133	Ensemble daily simulations for elucidating cloud–aerosol interactions under a large spread of realistic environmental conditions. Atmospheric Chemistry and Physics, 2020, 20, 6291-6303.	4.9	10
134	A Large‧cale Analysis of Pockets of Open Cells and Their Radiative Impact. Geophysical Research Letters, 2021, 48, e2020GL092213.	4.0	10
135	Model calibration using ESEm v1.1.0 – an open, scalable Earth system emulator. Geoscientific Model Development, 2021, 14, 7659-7672.	3.6	10
136	Corrigendum to "Aerosol indirect effects from shipping emissions: sensitivity studies with the global aerosol-climate model ECHAM-HAM" published in Atmos. Chem. Phys., 12, 5985–6007, 2012. Atmospheric Chemistry and Physics, 2013, 13, 6429-6430.	4.9	9
137	Isolating Largeâ€Scale Smoke Impacts on Cloud and Precipitation Processes Over the Amazon With Convection Permitting Resolution. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD034615.	3.3	9
138	On the contribution of fast and slow responses to precipitation changes caused by aerosol perturbations. Atmospheric Chemistry and Physics, 2021, 21, 10179-10197.	4.9	8
139	Cloudy-sky contributions to the direct aerosol effect. Atmospheric Chemistry and Physics, 2020, 20, 8855-8865.	4.9	8
140	Correction to "Global-scale black carbon profiles observed in the remote atmosphere and compared to models― Geophysical Research Letters, 2010, 37, n/a-n/a.	4.0	7
141	An Energetic View on the Geographical Dependence of the Fast Aerosol Radiative Effects on Precipitation. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033045.	3.3	6
142	The Global Atmosphereâ€aerosol Model ICONâ€Aâ€HAM2.3–Initial Model Evaluation and Effects of Radiation Balance Tuning on Aerosol Optical Thickness. Journal of Advances in Modeling Earth Systems, 2022, 14,	3.8	6
143	Scientific data from precipitation driver response model intercomparison project. Scientific Data, 2022, 9, 123.	5.3	5
144	Boundary conditions representation can determine simulated aerosol effects on convective cloud fields. Communications Earth & Environment, 2022, 3, .	6.8	5

#	Article	IF	CITATIONS
145	Forcing convection to aggregate using diabatic heating perturbations. Journal of Advances in Modeling Earth Systems, 2021, 13, e2021MS002579.	3.8	4
146	Corrigendum to "The magnitude and causes of uncertainty in global model simulations of cloud condensation nuclei" published in Atmos. Chem. Phys., 13, 8879–8914, 2013. Atmospheric Chemistry and Physics, 2013, 13, 9375-9377.	4.9	3
147	Examining the Regional Coâ€Variability of the Atmospheric Water and Energy Imbalances in Different Model Configurations—Linking Clouds and Circulation. Journal of Advances in Modeling Earth Systems, 2022, 14, .	3.8	3
148	Clobal response of parameterised convective cloud fields to anthropogenic aerosol forcing. Atmospheric Chemistry and Physics, 2020, 20, 4445-4460.	4.9	2
149	Contrasting Responses of Idealised and Realistic Simulations of Shallow Cumuli to Aerosol Perturbations. Geophysical Research Letters, 2021, 48, e2021GL094137.	4.0	2
150	Decomposing Effective Radiative Forcing Due to Aerosol Cloud Interactions by Global Cloud Regimes. Geophysical Research Letters, 2021, 48, e2021GL093833.	4.0	2
151	The Chemistry Climate Model ECHAM6.3-HAM2.3-MOZ1.0. Geoscientific Model Development Discussions (GMDD), 0, , 1-43.	0.0	2
152	Limited impact of sulfate-driven chemistry on black carbon aerosol aging in power plant plumes. AIMS Environmental Science, 2018, 5, 195-215.	1.4	1
153	Quantifying the sensitivity of aerosol optical properties to the parameterizations of physico-chemical processes during the 2010 Russian wildfires and heatwave. Atmospheric Chemistry and Physics, 2020, 20, 9679-9700.	4.9	1
154	New approaches to quantifying the magnitude and causes of uncertainty in global aerosol models. , 2013, , .		0
155	Satellite observations of convection and their implications for parameterizations. Series on the Science of Climate Change, 2015, , 47-58.	0.1	Ο