
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2964318/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Advances and applications of singleâ€cell omics technologies in plant research. Plant Journal, 2022, 110, 1551-1563.	5.7	27
2	A near-complete assembly of an Arabidopsis thaliana genome. Molecular Plant, 2022, 15, 1247-1250.	8.3	35
3	Coactivation of antagonistic genes stabilizes polarity patterning during shoot organogenesis. Science Advances, 2022, 8, .	10.3	9
4	Improving bread wheat yield through modulating an unselected AP2/ERF gene. Nature Plants, 2022, 8, 930-939.	9.3	23
5	The Mechanical Feedback Theory of Leaf Lamina Formation. Trends in Plant Science, 2021, 26, 107-110.	8.8	2
6	MicroRNA775 regulates intrinsic leaf size and reduces cell wall pectin levels by targeting a galactosyltransferase gene in Arabidopsis. Plant Cell, 2021, 33, 581-602.	6.6	22
7	What is quantitative plant biology?. Quantitative Plant Biology, 2021, 2, .	2.0	43
8	Plant multiscale networks: charting plant connectivity by multi-level analysis and imaging techniques. Science China Life Sciences, 2021, 64, 1392-1422.	4.9	21
9	Visualization of cortical microtubule networks in plant cells by live imaging and immunostaining. STAR Protocols, 2021, 2, 100301.	1.2	4
10	A crosstalk between auxin and brassinosteroid regulates leaf shape by modulating growth anisotropy. Molecular Plant, 2021, 14, 949-962.	8.3	23
11	Stochastic gene expression drives mesophyll protoplast regeneration. Science Advances, 2021, 7, .	10.3	44
12	Vision, challenges and opportunities for a Plant Cell Atlas. ELife, 2021, 10, .	6.0	31
13	Live Imaging of Arabidopsis Axillary Meristems. Methods in Molecular Biology, 2020, 2094, 59-65.	0.9	2
14	Control of cell fate during axillary meristem initiation. Cellular and Molecular Life Sciences, 2020, 77, 2343-2354.	5.4	14
15	Microtubule-Mediated Wall Anisotropy Contributes to Leaf Blade Flattening. Current Biology, 2020, 30, 3972-3985.e6.	3.9	69
16	Asynchrony of ovule primordia initiation in <i>Arabidopsis</i> . Development (Cambridge), 2020, 147, .	2.5	25
17	Cellulose Microfibril-Mediated Directional Plant Cell Expansion: Gas and Brake. Molecular Plant, 2020, 13, 1670-1672.	8.3	8
18	Epidermal restriction confers robustness to organ shapes. Journal of Integrative Plant Biology, 2020, 62, 1853-1867.	8.5	9

YULING JIAO

#	Article	IF	CITATIONS
19	Triticum population sequencing provides insights into wheat adaptation. Nature Genetics, 2020, 52, 1412-1422.	21.4	178
20	Multifaceted functions of auxin in vegetative axillary meristem initiation. Journal of Genetics and Genomics, 2020, 47, 591-594.	3.9	4
21	Leaflet initiation and blade expansion are separable in compound leaf development. Plant Journal, 2020, 104, 1073-1087.	5.7	22
22	Multi-level analysis of the interactions between REVOLUTA and MORE AXILLARY BRANCHES 2 in controlling plant development reveals parallel, independent and antagonistic functions. Development (Cambridge), 2020, 147, .	2.5	8
23	Keeping leaves in shape. Nature Plants, 2020, 6, 436-437.	9.3	8
24	Interplay between the shoot apical meristem and lateral organs. ABIOTECH, 2020, 1, 178-184.	3.9	6
25	Mechanical control of plant morphogenesis: concepts and progress. Current Opinion in Plant Biology, 2020, 57, 16-23.	7.1	20
26	A Self-Activation Loop Maintains Meristematic Cell Fate for Branching. Current Biology, 2020, 30, 1893-1904.e4.	3.9	30
27	The Diverse Roles of Auxin in Regulating Leaf Development. Plants, 2019, 8, 243.	3.5	52
28	The <i>35S</i> promoterâ€driven mDII auxin control sensor is uniformly distributed in leaf primordia. Journal of Integrative Plant Biology, 2019, 61, 1114-1120.	8.5	13
29	May the Force Be with You: Overlooked Mechanical Signaling. Molecular Plant, 2019, 12, 464-466.	8.3	5
30	Designing Plants: Modeling Ideal Shapes. Molecular Plant, 2019, 12, 130-132.	8.3	4
31	A gene expression map of shoot domains reveals regulatory mechanisms. Nature Communications, 2019, 10, 141.	12.8	96
32	Feedback from Lateral Organs Controls Shoot Apical Meristem Growth by Modulating Auxin Transport. Developmental Cell, 2018, 44, 204-216.e6.	7.0	62
33	AUXIN RESPONSE FACTOR3 Regulates Floral Meristem Determinacy by Repressing Cytokinin Biosynthesis and Signaling. Plant Cell, 2018, 30, 324-346.	6.6	89
34	Auxin and above-ground meristems. Journal of Experimental Botany, 2018, 69, 147-154.	4.8	57
35	Axillary meristem initiation — a way to branch out. Current Opinion in Plant Biology, 2018, 41, 61-66.	7.1	81
36	Spatiotemporal control of axillary meristem formation by interacting transcriptional regulators. Development (Cambridge), 2018, 145, .	2.5	25

#	Article	IF	CITATIONS
37	Reply to â€~Early shaping of a leaf'. Nature Plants, 2018, 4, 620-621.	9.3	5
38	Auxin and DORNRÖSCHEN joint force in the shoot apex. Science China Life Sciences, 2018, 61, 867-868.	4.9	3
39	Molecular Mechanisms of Leaf Morphogenesis. Molecular Plant, 2018, 11, 1117-1134.	8.3	171
40	Cytokinin Signaling Activates <i>WUSCHEL</i> Expression during Axillary Meristem Initiation. Plant Cell, 2017, 29, 1373-1387.	6.6	146
41	A Two-Step Model for de Novo Activation of <i>WUSCHEL</i> during Plant Shoot Regeneration. Plant Cell, 2017, 29, 1073-1087.	6.6	229
42	Single-cell transcriptome analysis reveals widespread monoallelic gene expression in individual rice mesophyll cells. Science Bulletin, 2017, 62, 1304-1314.	9.0	21
43	Spatial Auxin Signaling Controls Leaf Flattening in Arabidopsis. Current Biology, 2017, 27, 2940-2950.e4.	3.9	118
44	Model for the role of auxin polar transport in patterning of the leaf adaxial–abaxial axis. Plant Journal, 2017, 92, 469-480.	5.7	35
45	Transcriptome Association Identifies Regulators of Wheat Spike Architecture. Plant Physiology, 2017, 175, 746-757.	4.8	94
46	Dynamic patterns of gene expression during leaf initiation. Journal of Genetics and Genomics, 2017, 44, 599-601.	3.9	23
47	Mechanical regulation of organ asymmetry in leaves. Nature Plants, 2017, 3, 724-733.	9.3	110
48	Two-Step Regulation of a Meristematic Cell Population Acting in Shoot Branching in Arabidopsis. PLoS Genetics, 2016, 12, e1006168.	3.5	91
49	Regulation of Axillary Meristem Initiation by Transcription Factors and Plant Hormones. Frontiers in Plant Science, 2016, 7, 183.	3.6	49
50	Meristem Biology Flourishes Under Mt. Tai. Molecular Plant, 2016, 9, 1224-1227.	8.3	0
51	Trichome Formation: Gibberellins on the Move. Plant Physiology, 2016, 170, 1174-1175.	4.8	7
52	Transcriptome Survey of the Contribution of Alternative Splicing to Proteome Diversity in Arabidopsis thaliana. Molecular Plant, 2016, 9, 749-752.	8.3	43
53	The Molecular Mechanism of Ethylene-Mediated Root Hair Development Induced by Phosphate Starvation. PLoS Genetics, 2016, 12, e1006194.	3.5	108
54	<i>APETALA1</i> establishes determinate floral meristem through regulating cytokinins homeostasis in <i>Arabidopsis</i> . Plant Signaling and Behavior, 2015, 10, e989039.	2.4	7

#	Article	IF	CITATIONS
55	A systems approach to understand shoot branching. Current Plant Biology, 2015, 3-4, 13-19.	4.7	14
56	An organ boundaryâ€enriched gene regulatory network uncovers regulatory hierarchies underlying axillary meristem initiation. Molecular Systems Biology, 2014, 10, 755.	7.2	98
57	Suppression of Photosynthetic Gene Expression in Roots Is Required for Sustained Root Growth under Phosphate Deficiency Â. Plant Physiology, 2014, 165, 1156-1170.	4.8	71
58	Regulation of inflorescence architecture by cytokinins. Frontiers in Plant Science, 2014, 5, 669.	3.6	79
59	Auxin depletion from leaf primordia contributes to organ patterning. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 18769-18774.	7.1	88
60	The Stem Cell Niche in Leaf Axils Is Established by Auxin and Cytokinin in <i>Arabidopsis</i> . Plant Cell, 2014, 26, 2055-2067.	6.6	165
61	Cytokinin pathway mediates <i>APETALA1</i> function in the establishment of determinate floral meristems in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6840-6845.	7.1	87
62	<i><scp>AUXIN RESPONSE FACTOR</scp> 3</i> integrates the functions of <i><scp>AGAMOUS</scp></i> and <i><scp>APETALA</scp>2</i> in floral meristem determinacy. Plant Journal, 2014, 80, 629-641.	5.7	115
63	Translating Ribosome Affinity Purification (TRAP) for Cell-Specific Translation Profiling in Developing Flowers. Methods in Molecular Biology, 2014, 1110, 323-328.	0.9	10
64	Next-Generation Sequencing Applied to Flower Development: RNA-Seq. Methods in Molecular Biology, 2014, 1110, 401-411.	0.9	12
65	Flower Development: Open Questions and Future Directions. Methods in Molecular Biology, 2014, 1110, 103-124.	0.9	26
66	SKIP Is a Component of the Spliceosome Linking Alternative Splicing and the Circadian Clock in <i>Arabidopsis</i> . Plant Cell, 2012, 24, 3278-3295.	6.6	198
67	An AT-hook gene is required for palea formation and floral organ number control in rice. Developmental Biology, 2011, 359, 277-288.	2.0	94
68	Genome-Wide Profiling of Uncapped mRNA. Methods in Molecular Biology, 2011, 876, 207-216.	0.9	2
69	Advances in plant cell type-specific genome-wide studies of gene expression. Frontiers in Biology, 2011, 6, 384-389.	0.7	5
70	Arabidopsis Regeneration from Multiple Tissues Occurs via a Root Development Pathway. Developmental Cell, 2010, 18, 463-471.	7.0	502
71	Cellâ€ŧype specific analysis of translating RNAs in developing flowers reveals new levels of control. Molecular Systems Biology, 2010, 6, 419.	7.2	155
72	A transcriptome atlas of rice cell types uncovers cellular, functional and developmental hierarchies. Nature Genetics, 2009, 41, 258-263.	21.4	229

#	Article	IF	CITATIONS
73	Transcriptome-Wide Analysis of Uncapped mRNAs in <i>Arabidopsis</i> Reveals Regulation of mRNA Degradation. Plant Cell, 2008, 20, 2571-2585.	6.6	64
74	The promise of systems biology for deciphering the control of C ₄ leaf development: transcriptome profiling of leaf cell types. , 2008, , 317-332.		1
75	A genome-wide transcriptional activity survey of rice transposable element-related genes. Genome Biology, 2007, 8, R28.	9.6	47
76	Light-regulated transcriptional networks in higher plants. Nature Reviews Genetics, 2007, 8, 217-230.	16.3	892
77	Distinct reorganization of the genome transcription associates with organogenesis of somatic embryo, shoots, and roots in rice. Plant Molecular Biology, 2007, 63, 337-349.	3.9	26
78	Clobal genome expression analysis of rice in response to drought and high-salinity stresses in shoot, flag leaf, and panicle. Plant Molecular Biology, 2007, 63, 591-608.	3.9	275
79	A Tiling Microarray Expression Analysis of Rice Chromosome 4 Suggests a Chromosome-Level Regulation of Transcription. Plant Cell, 2005, 17, 1641-1657.	6.6	56
80	A microarray analysis of the rice transcriptome and its comparison to Arabidopsis. Genome Research, 2005, 15, 1274-1283.	5.5	112
81	Organ-Specific Expression of Arabidopsis Genome during Development. Plant Physiology, 2005, 138, 80-91.	4.8	164
82	Conservation and Divergence of Light-Regulated Genome Expression Patterns during Seedling Development in Rice and Arabidopsis Â[W]. Plant Cell, 2005, 17, 3239-3256.	6.6	207
83	A Genome-Wide Analysis of Blue-Light Regulation of Arabidopsis Transcription Factor Gene Expression during Seedling Development Â. Plant Physiology, 2003, 133, 1480-1493.	4.8	108