Rupak Banerjee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2964311/publications.pdf

Version: 2024-02-01

567281 526287 44 795 15 27 citations g-index h-index papers 44 44 44 943 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Gas sensing performance of 2D nanomaterials/metal oxide nanocomposites: a review. Journal of Materials Chemistry C, 2021, 9, 8776-8808.	5.5	115
2	Core shell paraffin/silica nanocomposite: A promising phase change material for thermal energy storage. Renewable Energy, 2021, 167, 591-599.	8.9	62
3	Air-stable, non-volatile resistive memory based on hybrid organic/inorganic nanocomposites. Organic Electronics, 2015, 18, 17-23.	2.6	47
4	Direct observation of conductive filament formation in Alq3 based organic resistive memories. Journal of Applied Physics, 2015, 118, .	2.5	36
5	Evidence for Kinetically Limited Thickness Dependent Phase Separation in Organic Thin Film Blends. Physical Review Letters, 2013, 110, 185506.	7.8	35
6	Monitoring Self-Assembly and Ligand Exchange of PbS Nanocrystal Superlattices at the Liquid/Air Interface in Real Time. Journal of Physical Chemistry Letters, 2018, 9, 739-744.	4.6	33
7	Fabrication of long-ranged close-packed monolayer of silica nanospheres by spin coating. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 553, 520-527.	4.7	33
8	Growth of Competing Crystal Phases of α-Sexithiophene Studied by Real-Time <i>in Situ</i> X-ray Scattering. Journal of Physical Chemistry C, 2015, 119, 819-825.	3.1	31
9	Site-Specific Ligand Interactions Favor the Tetragonal Distortion of PbS Nanocrystal Superlattices. ACS Applied Materials & Samp; Interfaces, 2016, 8, 22526-22533.	8.0	31
10	Growth of titanium dioxide nanorod over shape memory material using chemical vapor deposition for energy conversion application. Materials Today: Proceedings, 2020, 28, 475-479.	1.8	30
11	Mixing-Induced Anisotropic Correlations in Molecular Crystalline Systems. Physical Review Letters, 2012, 109, 156102.	7.8	25
12	Island size evolution and molecular diffusion during growth of organic thin films followed by time-resolved specular and off-specular scattering. Physical Review B, 2014, 90, .	3.2	25
13	Unravelling camphor mediated synthesis of TiO2 nanorods over shape memory alloy for efficient energy harvesting. Applied Surface Science, 2021, 541, 148489.	6.1	25
14	Analysis of island shape evolution from diffuse x-ray scattering of organic thin films and implications for growth. Physical Review B, 2014, 90, .	3.2	18
15	Temperature-dependent dielectric properties of CsPb ₂ Br ₅ : a 2D inorganic halide perovskite. Nanotechnology, 2022, 33, 195703.	2.6	18
16	Nanopattern formation in self-assembled monolayers of thiol-capped Au nanocrystals. Physical Review E, 2009, 80, 056204.	2.1	15
17	Structural reordering in monolayers of gold nanoparticles during transfer from water surface to solid substrate. Physical Review E, 2011, 83, 051605.	2.1	14
18	Fabrication and characterization of combined metallic nanogratings and ITO electrodes for organic photovoltaic cells. Microelectronic Engineering, 2014, 119, 122-126.	2.4	14

#	Article	IF	CITATIONS
19	Controlled etching of silica nanospheres monolayer for template application: A systematic study. Applied Surface Science, 2020, 500, 144050.	6.1	14
20	Recent advances in g-C ₃ N ₄ based gas sensors for the detection of toxic and flammable gases: a review. Nano Express, 2022, 3, 014003.	2.4	14
21	Photoelectrocatalytic CO2 reduction using stable lead-free bimetallic CsAgBr2 halide perovskite nanocrystals. Journal of Electroanalytical Chemistry, 2022, 920, 116583.	3.8	14
22	Structural Properties of Picene–Perfluoropentacene and Picene–Pentacene Blends: Superlattice Formation versus Limited Intermixing. Journal of Physical Chemistry C, 2015, 119, 26339-26347.	3.1	13
23	Real-time X-ray scattering studies on temperature dependence of perfluoropentacene thin film growth. Journal of Applied Physics, 2013, 114, 043515.	2.5	12
24	Systematic investigation of close-packed silica nanospheres monolayer under sintering conditions. Journal of the European Ceramic Society, 2019, 39, 1411-1419.	5.7	12
25	Controlling length-scales of the phase separation to optimize organic semiconductor blends. Applied Physics Letters, 2015, 107, .	3.3	11
26	Templating Effects of α-Sexithiophene in Donor–Acceptor Organic Thin Films. Journal of Physical Chemistry C, 2015, 119, 23211-23220.	3.1	10
27	Structural, optical, and electronic characterization of perfluorinated sexithiophene films and mixed films with sexithiophene. Journal of Materials Research, 2017, 32, 1908-1920.	2.6	10
28	Fabrication of silicon nanohorns via soft lithography technique for photoelectrochemical application. International Journal of Hydrogen Energy, 2021, 46, 16404-16413.	7.1	9
29	Fabrication of silver nanodome embedded zinc oxide nanorods for enhanced Raman spectroscopy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 639, 128336.	4.7	9
30	Highly stable n-hexacosane loaded exfoliated graphite nanosheets for enhanced thermal energy storage application. Journal of Energy Storage, 2022, 48, 103903.	8.1	8
31	Effect of vibrations on the formation of gold nanoparticle aggregates at the toluene–water interface. Chemical Physics Letters, 2008, 461, 97-101.	2.6	6
32	Reversible monolayer-to-crystalline phase transition in amphiphilic silsesquioxane at the air-water interface. Scientific Reports, 2015, 5, 8497.	3.3	6
33	Influence of C60 co-deposition on the growth kinetics of diindenoperylene–From rapid roughening to layer-by-layer growth in blended organic films. Journal of Chemical Physics, 2017, 146, 052807.	3.0	6
34	Interrupted Growth to Manipulate Phase Separation in DIP:C60 Organic Semiconductor Blends. Journal of Physical Chemistry C, 2018, 122, 1839-1845.	3.1	6
35	Structure and Morphology of Organic Semiconductor–Nanoparticle Hybrids Prepared by Soft Deposition. Journal of Physical Chemistry C, 2015, 119, 5225-5237.	3.1	5
36	Thermal crowning mechanism in gold–silica nanocomposites: plasmonic-photonic pairing in archetypal two-dimensional structures. Physical Chemistry Chemical Physics, 2021, 23, 17197-17207.	2.8	5

#	Article	IF	CITATIONS
37	Enhanced surface diffusion in forming ion-beam-induced nanopatterns on Si (O O 1). Journal Physics D: Applied Physics, 2008, 41, 055306.	2.8	3
38	Self-assembly of silica nanoparticles by tuning substrate-adsorbate interaction. AIP Conference Proceedings, 2018, , .	0.4	3
39	<i>In situ</i> formation of electronically coupled superlattices of Cu _{1.1} S nanodiscs at the liquid/air interface. Chemical Communications, 2019, 55, 4805-4808.	4.1	3
40	On the Origin of Gap States in Molecular Semiconductorsâ€"A Combined UPS, AFM, and X-ray Diffraction Study. Journal of Physical Chemistry C, 2021, 125, 17929-17938.	3.1	3
41	Controlled restructuring of bidisperse silica nanospheres for size-selective nanowire growth. Materials Chemistry and Physics, 2021, 273, 125063.	4.0	3
42	Charge Separation at Nanostructured Molecular Donor–Acceptor Interfaces. Advances in Polymer Science, 2017, , 77-108.	0.8	2
43	Influence of Substitutional Groups on the Ordering and Crystallization of Amphiphilic Silsesquioxanes at the Air–Water Interface. Langmuir, 2021, 37, 6232-6242.	3.5	1
44	Grazing Incidence X-ray Scattering Techniques to Study Growth Mechanism of Organic Films. World Scientific Series in Nanoscience and Nanotechnology, 2021, , 49-95.	0.1	0